A New Classifier Design With Fuzzy Functions

dc.contributor.author Celikytlmaz, Ash
dc.contributor.author Tuerksen, I. Burhan
dc.contributor.author Aktas, Ramazan
dc.contributor.author Doganay, M. Mete
dc.contributor.author Ceylan, N. Basak
dc.contributor.other Tourism Management
dc.date.accessioned 2024-10-06T10:57:14Z
dc.date.available 2024-10-06T10:57:14Z
dc.date.issued 2007
dc.department Atılım University en_US
dc.department-temp [Celikytlmaz, Ash; Tuerksen, I. Burhan] Univ Toronto, Dept Mech & Ind Engn, 100 Coll St, Toronto, ON, Canada; [Tuerksen, I. Burhan] TOBB Econ & Technol Univ, Dept Ind Engn, Ankara, Turkey; [Aktas, Ramazan] TOBB Econ & Technol Univ, Dept Business Adm, Ankara, Turkey; [Doganay, M. Mete] Cankaya Univ, Dept Business Adm, Ankara, Turkey; [Ceylan, N. Basak] Atilim Univ, Dept Business Adm, Ankara, Turkey en_US
dc.description.abstract This paper presents a new fuzzy classifier design, which constructs one classifier for each fuzzy partition of a given system. The new approach, namely Fuzzy Classifier Functions (FCF), is an adaptation of our generic design on Fuzzy Functions to classification problems. This approach couples any fuzzy clustering algorithm with any classification method, in a unique way. The presented model derives fuzzy functions (rules) from data to classify patterns into number of classes. Fuzzy c-means clustering is used to capture hidden fuzzy patterns and a linear or a non-linear classifier function is used to build one classifier model for each pattern identified. The performance of each classifier is enhanced by using corresponding membership values of the data vectors as additional input variables. FCF is proposed as an alternate representation and reasoning schema to fuzzy rule base classifiers. The proposed method is evaluated by the comparison of experiments with the standard classifier methods using cross validation on test patterns. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 9
dc.identifier.endpage + en_US
dc.identifier.isbn 9783540725299
dc.identifier.issn 0302-9743
dc.identifier.issn 1611-3349
dc.identifier.scopusquality Q3
dc.identifier.startpage 136 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14411/8693
dc.identifier.volume 4482 en_US
dc.identifier.wos WOS:000246403500016
dc.institutionauthor Ceylan, Nildağ Başak
dc.language.iso en en_US
dc.publisher Springer-verlag Berlin en_US
dc.relation.ispartof 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2007) -- MAY 14-16, 2007 -- Toronto, CANADA en_US
dc.relation.ispartofseries Lecture Notes in Artificial Intelligence
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject fuzzy classification en_US
dc.subject fuzzy c-means clustering en_US
dc.subject SVM en_US
dc.title A New Classifier Design With Fuzzy Functions en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication 909954e7-ee7c-4c32-8d50-ede83c336061
relation.isAuthorOfPublication.latestForDiscovery 909954e7-ee7c-4c32-8d50-ede83c336061
relation.isOrgUnitOfPublication fa7389a7-6286-485f-8655-ffa9a4377091
relation.isOrgUnitOfPublication.latestForDiscovery fa7389a7-6286-485f-8655-ffa9a4377091

Files

Collections