Novel COVID-19 Recognition Framework Based on Conic Functions Classifier

No Thumbnail Available

Date

2022

Authors

Mıshra, Alok
Mishra,A.

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science and Business Media Deutschland GmbH

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.

Journal Issue

Abstract

The new coronavirus has been declared as a global emergency. The first case was officially declared in Wuhan, China, during the end of 2019. Since then, the virus has spread to nearly every continent, and case numbers continue to rise. The scientists and engineers immediately responded to the virus and presented techniques, devices and treatment approaches to fight back and eliminate the virus. Machine learning is a popular scientific tool and is applied to several medical image recognition problems, involving tumour recognition, cancer detection, organ transplantation and COVID-19 diagnosis. It is proved that machine learning presents robust, fast and accurate results in various medical image recognition problems. Generally, machine learning-based frameworks consist of two stages: feature extraction and classification. In the feature extraction, overwhelmingly unsupervised learning techniques are applied to reduce the input data’s size. This step extracts appropriate features by reducing the computational time and increasing the performance of the classifiers. A classifier is the second step that aims to categorise the input. Within the proposed step, the unsupervised part relies on the feature extraction by using local binary patterns (LBP), followed by feature selection relying on factor analysis technique. The LBP is a kind of visual descriptor, mainly applied for image recognition problem. The aim of using LBP is to analyse the input COVID-19 image and extract salient features. Furthermore, factor analysis is a statistical technique applied to define variability among observed variables in less unnoticed variables named factors. The factor analysis applied to the LBP wavelet aims to select sensitive features from input data (LBP output) and reduce the size input. In the last stage, conic functions classifier is applied to classify two sets of data, categorising the extracted features by using LBP and factor analysis as positive or negative COVID-19 cases. The proposed solution aims to diagnose COVID-19 by using LBP and factor analysis, based on conic functions classifier. The conic functions classifier presents remarkable results compared with these popular classifiers and state-of-the-art studies presented in the literature. © 2022, Springer Nature Switzerland AG.

Description

Keywords

Conic functions classifier, COVID-19, Factor analysis, LBP

Turkish CoHE Thesis Center URL

Fields of Science

Citation

2

WoS Q

Scopus Q

Q3

Source

EAI/Springer Innovations in Communication and Computing

Volume

Issue

Start Page

1

End Page

10