Finite deformation plasticity coupled with isotropic damage: Formulation in principal axes and applications

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.
Organizational Unit
Department of Mechatronics Engineering
Our purpose in the program is to educate our students for contributing to universal knowledge by doing research on contemporary mechatronics engineering problems and provide them with design, production and publication skills. To reach this goal our post graduate students are offered courses in various areas of mechatronics engineering, encouraged to do research to develop their expertise and their creative side, as well as develop analysis and design skills.

Journal Issue

Abstract

A local, isotropic damage coupled hyperelastic-plastic framework is formulated in principal axes. It is shown that, in a functional setting, treatment of many damage growth models, including those originated from phenomenological models (with formal thermodynamical derivations), micromechanics or fracture criteria, proposed in the literature, is possible. As a model problem, a Lemaitre-variant damage model with quasi-unilateral damage evolutionary forms is given with special emphasis on the feasibility of formulations in principal axes. To this end, closed form expression for the inelastic tangent moduli, consistent with the linearization of the closest point projection algorithm, is derived. It is shown that, generally, even in the absence of quasi-unilateral damage evolutionary conditions, the consistent tangent moduli are unsymmetric. The model is implemented as a user defined material subroutine (UMAT) for ABAQUS/Standard. The predictive capability of the selected model problem is studied through axi-symmetric application problems involving forward extrusion of a cylindrical billet, upsetting of a tapered specimen and tension of a notched specimen, in which characteristic failure mechanisms are observed. (C) 2010 Elsevier B.V. All rights reserved.

Description

Tekkaya, Erman/0000-0002-5197-2948; Soyarslan, Celal/0000-0003-1029-237X

Keywords

Damage coupled elasto-plasticity, Finite strain, Finite elements, Return map

Turkish CoHE Thesis Center URL

Fields of Science

Citation

14

WoS Q

Q1

Scopus Q

Q2

Source

Volume

46

Issue

8

Start Page

668

End Page

683

Collections