A Novel Hybrid Machine Learning Based System To Classify Shoulder Implant Manufacturers

dc.contributor.author Sivari, Esra
dc.contributor.author Guzel, Mehmet Serdar
dc.contributor.author Bostanci, Erkan
dc.contributor.author Mishra, Alok
dc.contributor.other Software Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:17:53Z
dc.date.available 2024-07-05T15:17:53Z
dc.date.issued 2022
dc.description Mishra, Alok/0000-0003-1275-2050; Guzel, Mehmet/0000-0002-3408-0083; Sivari, Esra/0000-0002-5708-7421; Bostanci, Gazi Erkan/0000-0001-8547-7569 en_US
dc.description.abstract It is necessary to know the manufacturer and model of a previously implanted shoulder prosthesis before performing Total Shoulder Arthroplasty operations, which may need to be performed repeatedly in accordance with the need for repair or replacement. In cases where the patient's previous records cannot be found, where the records are not clear, or the surgery was conducted abroad, the specialist should identify the implant manufacturer and model during preoperative X-ray controls. In this study, an auxiliary expert system is proposed for classifying manufacturers of shoulder implants on the basis of X-ray images that is automated, objective, and based on hybrid machine learning models. In the proposed system, ten different hybrid models consisting of a combination of deep learning and machine learning algorithms were created and statistically tested. According to the experimental results, an accuracy of 95.07% was achieved using the DenseNet201 + Logistic Regression model, one of the proposed hybrid machine learning models (p < 0.05). The proposed hybrid machine learning algorithms achieve the goal of low cost and high performance compared to other studies in the literature. The results lead the authors to believe that the proposed system could be used in hospitals as an automatic and objective system for assisting orthopedists in the rapid and effective determination of shoulder implant types before performing revision surgery. en_US
dc.identifier.doi 10.3390/healthcare10030580
dc.identifier.issn 2227-9032
dc.identifier.scopus 2-s2.0-85127441940
dc.identifier.uri https://doi.org/10.3390/healthcare10030580
dc.identifier.uri https://hdl.handle.net/20.500.14411/1807
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Healthcare
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject machine learning en_US
dc.subject hybrid models en_US
dc.subject shoulder implants en_US
dc.subject X-ray images en_US
dc.title A Novel Hybrid Machine Learning Based System To Classify Shoulder Implant Manufacturers en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Mishra, Alok/0000-0003-1275-2050
gdc.author.id Guzel, Mehmet/0000-0002-3408-0083
gdc.author.id Sivari, Esra/0000-0002-5708-7421
gdc.author.id Bostanci, Gazi Erkan/0000-0001-8547-7569
gdc.author.institutional Mıshra, Alok
gdc.author.scopusid 57219892926
gdc.author.scopusid 36349844700
gdc.author.scopusid 55364555800
gdc.author.scopusid 7201441575
gdc.author.wosid Güzel, Mehmet/AAI-7466-2020
gdc.author.wosid Mishra, Alok/AAE-2673-2019
gdc.author.wosid Guzel, Mehmet/I-5465-2013
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Sivari, Esra] Cankiri Karatekin Univ, Comp Engn Dept, TR-18100 Cankiri, Turkey; [Guzel, Mehmet Serdar; Bostanci, Erkan] Ankara Univ, Comp Engn Dept, TR-06830 Ankara, Turkey; [Mishra, Alok] Molde Univ Coll Specialized Univ Logist, Fac Logist, N-6402 Molde, Norway; [Mishra, Alok] Atilim Univ, Software Engn Dept, TR-06830 Ankara, Turkey en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 580
gdc.description.volume 10 en_US
gdc.identifier.openalex W4220838146
gdc.identifier.pmid 35327056
gdc.identifier.wos WOS:000775263800001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 21.0
gdc.oaire.influence 3.774059E-9
gdc.oaire.isgreen true
gdc.oaire.keywords machine learning; hybrid models; shoulder implants; X-ray images
gdc.oaire.keywords Article
gdc.oaire.popularity 1.8910253E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 1.419
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 19
gdc.plumx.crossrefcites 22
gdc.plumx.mendeley 17
gdc.plumx.pubmedcites 4
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 22
gdc.wos.citedcount 16
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections