An Undergraduate Curriculum for Deep Learning
| dc.contributor.author | Tirkes, Guzin | |
| dc.contributor.author | Ekin, Cansu Cigdem | |
| dc.contributor.author | Sengul, Gokhan | |
| dc.contributor.author | Bostan, Atila | |
| dc.contributor.author | Karakaya, Murat | |
| dc.contributor.other | Computer Engineering | |
| dc.contributor.other | 06. School Of Engineering | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-10-06T10:58:28Z | |
| dc.date.available | 2024-10-06T10:58:28Z | |
| dc.date.issued | 2018 | |
| dc.description | Turkmen, Guzin/0000-0003-0884-4876; Ekin, Cansu Cigdem/0000-0003-4838-9708; Bostan, Atila/0000-0002-8540-7605 | en_US |
| dc.description.abstract | Deep Learning (DL) is an interesting and rapidly developing field of research which has been currently utilized as a part of industry and in many disciplines to address a wide range of problems, from image classification, computer vision, video games, bioinformatics, and handwriting recognition to machine translation. The starting point of this study is the recognition of a big gap between the sector need of specialists in DL technology and the lack of sufficient education provided by the universities. Higher education institutions are the best environment to provide this expertise to the students. However, currently most universities do not provide specifically designed DL courses to their students. Thus, the main objective of this study is to design a novel curriculum including two courses to facilitate teaching and learning of DL topic. The proposed curriculum will enable students to solve real-world problems by applying DL approaches and gain necessary background to adapt their knowledge to more advanced, industry-specific fields. | en_US |
| dc.identifier.isbn | 9781538678930 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/8908 | |
| dc.language.iso | en | en_US |
| dc.publisher | Ieee | en_US |
| dc.relation.ispartof | 3rd International Conference on Computer Science and Engineering (UBMK) -- SEP 20-23, 2018 -- Sarajevo, BOSNIA & HERCEG | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | curriculum design | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Deep Neural Networks | en_US |
| dc.subject | Engineering Education | en_US |
| dc.title | An Undergraduate Curriculum for Deep Learning | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Turkmen, Guzin/0000-0003-0884-4876 | |
| gdc.author.id | Ekin, Cansu Cigdem/0000-0003-4838-9708 | |
| gdc.author.id | Bostan, Atila/0000-0002-8540-7605 | |
| gdc.author.institutional | Türkmen, Güzin | |
| gdc.author.institutional | Ekin, Cansu Çiğdem | |
| gdc.author.institutional | Şengül, Gökhan | |
| gdc.author.institutional | Bostan, Atila | |
| gdc.author.institutional | Karakaya, Kasım Murat | |
| gdc.author.wosid | Şengül, Gökhan/AAA-2788-2022 | |
| gdc.author.wosid | Ekin, cansu/AFE-7836-2022 | |
| gdc.author.wosid | KARAKAYA, Murat/A-4952-2013 | |
| gdc.author.wosid | Bostan, Atila/AAY-2187-2020 | |
| gdc.author.wosid | Turkmen, Guzin/G-9033-2019 | |
| gdc.author.wosid | Bostan, Atila/O-6678-2018 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Tirkes, Guzin; Ekin, Cansu Cigdem; Sengul, Gokhan; Bostan, Atila; Karakaya, Murat] Atilim Univ, Dept Comp Engn, Ankara, Turkey | en_US |
| gdc.description.endpage | 609 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 604 | en_US |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.wos | WOS:000459847400116 | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | 4aaa6f9a-60e2-4552-9c91-208fd7db4150 | |
| relation.isAuthorOfPublication | 6ba797de-1a42-4c28-bbdc-867221fad30c | |
| relation.isAuthorOfPublication | f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b | |
| relation.isAuthorOfPublication | d46977b1-8c5f-48c5-b14f-617a2691d9dd | |
| relation.isAuthorOfPublication | 93f27ee1-19eb-42dc-b4eb-a3cc7dc4b057 | |
| relation.isAuthorOfPublication.latestForDiscovery | 4aaa6f9a-60e2-4552-9c91-208fd7db4150 | |
| relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |