K<SUP>+</SUP>-induced conformational changes in the trimeric betaine transporter BetP monitored by ATR-FTIR spectroscopy

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Physics Group
Atılım University Physics Division was established with the purpose of educating the first-year students of the Engineering and other Departments by providing the general physics courses and, in addition, to make scientific and technological researches at the universal level. Now adays, Physics Division provide the students of Engineering, School of Aviation and Mathematics Departments with the general physics lectures having international education quality. We have in the Group the facilities of the mechanics and electricity laboratories, where the students have the opportunity to realize the practice of the theoretical knowledge in physics. Beside the compulsory courses (General Physics I and General Physics II) there are also elective courses offered by the Group. The faculty members in the Group, whose research interests and fields are given in web-page of the Group in details, perform theoretical as well as experimental researches and make publications in SSC-index journals. Graduate program, with master of sciences and doctorate degree courses and theses, is offered in different scientific areas (for details, see the web-page of the Division). In the Physcis Division there are 6 faculty members, five research assistants, and one technician.

Journal Issue

Abstract

The trimeric Na+-coupled betaine symporter BetP from Corynebactrium glutamicum adjusts transport activity according to the external osmolality. BetP senses the increasing internal K+ concentration, which is an immediate consequence of osmotic upshift in C. glutamicum. It is assumed that BetP specifically binds potassium to yet unidentified binding sites, thereby inducing conformational changes resulting in activation. Atomic structures of BetP were obtained in the absence of potassium allowing only a speculative glimpse on a putative mechanism of K+-induced transport activation. The structural data suggest that activation in BetP is crucially linked to its trimeric state involving an interaction network between several arginines and glutamates and aspartates. Here, we describe the effect of K+-induced activation on the specific ionic interaction sites in terminal domains and loops and on the protomer-protomer interactions within the trimer studied by ATR-FTIR spectroscopy. We suggest that arginine and aspartate and/or glutamate residues at the trimeric interface rearrange upon K+-induced activation, although they remain assembled in an interaction network. Our data propose a two-step mechanism comprising first a change in solvent exposure of charged residues and second a modification of their interaction sites in a partner-switching manner. FTIR reveals a higher alpha-helical content than expected from the X-ray structures that we attribute to the structurally unresolved N-terminal domain modulating regulation. In situ H-1/H-2 exchange studies point toward an altered exposure of backbone regions to buffer solution upon activation, most likely due to conformational changes in both terminal domains, which further affects ionic interactions within the trimer. (C) 2013 Elsevier B.V. All rights reserved.

Description

Korkmaz, Filiz/0000-0003-3512-3521; Ziegler, Christine Maria/0000-0003-3439-7213

Keywords

Secondary transporter, BetP, Transport regulation, Side chain subtraction, Secondary structure, Curve fitting

Turkish CoHE Thesis Center URL

Fields of Science

Citation

14

WoS Q

Q2

Scopus Q

Source

Volume

1828

Issue

4

Start Page

1181

End Page

1191

Collections