New generation radiation-grafted PVDF-g-VBC based dual-fiber electrospun anion exchange membranes
Loading...
Date
2024
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Anion Exchange Membranes (AEM) have the potential to solve the cost issues of fuel cell technologies due to their basic environment that can allow the use of cheaper components. However, there is still a need to develop an ideal inexpensive, mechanically robust AEM with high ionic conductivity and ion exchange capacity (IEC). In this work, we present various dual-fiber electrospun membranes based on a novel radiation-grafted copolymer. First, the synthesis route of radiation-induced grafting of vinyl benzyl chloride (VBC) onto poly (vinylidene fluoride) (PVDF) to prepare PVDF-g-VBC was optimized. Then, PVDF-g-VBC powders were used to fabricate dual-fiber electrospun mats with inert PVDF and commercial Fumion-FAA-3 ionomer. Dual-fiber electrospun mats were hot-pressed and then quaternized with trimethylamine. Finally, mechanical properties, ion exchange capacity, ionic conductivity, and morphology of these prepared dual-fiber electrospun membranes were investigated. The dual-fiber membrane prepared with PVDF-g-VBC (88% of the total weight of the membrane) and PVDF: Fumion-FAA-3 (1:2) mix (12 wt%) realized ionic conductivity of 4.67 mS/cm at 25 °C, high ion exchange capacity of 1.35 mmol/g with Young's Modulus of 761 MPa. The membrane based on the combination of radiation grafting and dual-fiber electrospinning was prepared for the first time in literature and offers the prospect of tuning and fine-control of mechanical and physicochemical properties of AEMs. © 2023 Hydrogen Energy Publications LLC
Description
Keywords
Anion exchange membrane, Dual-fiber electrospinning, Fuel cells, Radiation-induced grafting, 660, Anion exchange membrane; Dual-fiber electrospinning; Fuel cells; Radiation-induced grafting
Turkish CoHE Thesis Center URL
Fields of Science
02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences
Citation
WoS Q
Q1
Scopus Q

OpenCitations Citation Count
9
Source
International Journal of Hydrogen Energy
Volume
51
Issue
Start Page
1390
End Page
1401
Collections
PlumX Metrics
Citations
Scopus : 16
Captures
Mendeley Readers : 13
SCOPUS™ Citations
16
checked on Feb 03, 2026
Page Views
3
checked on Feb 03, 2026
Downloads
57
checked on Feb 03, 2026
Google Scholar™

OpenAlex FWCI
2.82002627
Sustainable Development Goals
2
ZERO HUNGER

3
GOOD HEALTH AND WELL-BEING

5
GENDER EQUALITY

6
CLEAN WATER AND SANITATION

11
SUSTAINABLE CITIES AND COMMUNITIES

14
LIFE BELOW WATER

15
LIFE ON LAND

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS


