Improving Text Classification with Transformer

dc.authorscopusid57479136000
dc.authorscopusid57478713200
dc.authorscopusid57478576100
dc.authorscopusid14632851900
dc.contributor.authorSoyalp,G.
dc.contributor.authorAlar,A.
dc.contributor.authorOzkanli,K.
dc.contributor.authorYildiz,B.
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:46:14Z
dc.date.available2024-07-05T15:46:14Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-tempSoyalp G., Department of Software Engineering, Atilim University, Ankara, Turkey; Alar A., Department of Software Engineering, Atilim University, Ankara, Turkey; Ozkanli K., Department of Software Engineering, Atilim University, Ankara, Turkey; Yildiz B., Department of Software Engineering, Atilim University, Ankara, Turkeyen_US
dc.description.abstractHuge amounts of text data are produced every day. Processing text data that accumulates and grows exponentially every day requires the use of appropriate automation tools. Text classification, a Natural Language Processing task, has the potential to provide automatic text data processing. Many new models have been proposed to achieve much better results in text classification. The transformer model has been introduced recently to provide superior performance in terms of accuracy and processing speed in deep learning. In this article, we propose an improved Transformer model for text classification. The dataset containing information about the books was collected from an online resource and used to train the models. We witnessed superior performance in our proposed Transformer model compared to previous state-of-art models such as L S T M and CNN. © 2021 IEEEen_US
dc.identifier.citation9
dc.identifier.doi10.1109/UBMK52708.2021.9558906
dc.identifier.endpage712en_US
dc.identifier.isbn978-166542908-5
dc.identifier.scopus2-s2.0-85125862458
dc.identifier.startpage707en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK52708.2021.9558906
dc.identifier.urihttps://hdl.handle.net/20.500.14411/4034
dc.institutionauthorYıldız, Beytullah
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021 -- 6th International Conference on Computer Science and Engineering, UBMK 2021 -- 15 September 2021 through 17 September 2021 -- Ankara -- 176826en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAttentionen_US
dc.subjectDeep learningen_US
dc.subjectNatural language processingen_US
dc.subjectText classificationen_US
dc.subjectTransformeren_US
dc.subjectWord embeddingen_US
dc.titleImproving Text Classification with Transformeren_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication.latestForDiscovery8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections