Comparison of Three Different Learning Methods of Multilayer Perceptron Neural Network for Wind Speed Forecasting

dc.authoridBulut, Dr. Mehmet/0000-0003-3998-1785
dc.authoridBULUT, Mehmet/0000-0003-3998-1785
dc.authoridTora, Hakan/0000-0002-0427-483X
dc.authoridBuaisha, Dr.Magdi/0000-0001-9879-968X
dc.authorscopusid57224939203
dc.authorscopusid6506642154
dc.authorscopusid57211402383
dc.authorwosidBulut, Dr. Mehmet/ADN-7823-2022
dc.authorwosidBULUT, Mehmet/I-9715-2019
dc.contributor.authorBulut, Mehmet
dc.contributor.authorTora, Hakan
dc.contributor.authorBuaisha, Dr.magdi
dc.contributor.otherAirframe and Powerplant Maintenance
dc.contributor.otherElectrical-Electronics Engineering
dc.date.accessioned2024-07-05T15:19:32Z
dc.date.available2024-07-05T15:19:32Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-tempTanımlanmamış Kurum,ATILIM ÜNİVERSİTESİ,Yabancı Kurumlaren_US
dc.descriptionBulut, Dr. Mehmet/0000-0003-3998-1785; BULUT, Mehmet/0000-0003-3998-1785; Tora, Hakan/0000-0002-0427-483X; Buaisha, Dr.Magdi/0000-0001-9879-968Xen_US
dc.description.abstractIn the world, electric power is the highest need for high prosperity and comfortable living standards. The security of energy supply is an essential concept in national energy management. Therefore, ensuring the security of electricity supply requires accurate estimates of electricity demand. The share of electricity generation from renewables is significantly growing in the world. This kind of energy types are dependent on weather conditions as the wind and solar energies. There are two vital requirements to locate and measure specific systems to utilize wind power: modelling and forecasting of the wind velocity. To this end, using only 4 years of measured meteorological data, the present research attempts to estimate the related speed of wind within the Libyan Mediterranean coast with the help of ANN (artificial neural networking) with three different learning algorithms, which are Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient. Conclusions reached in this study show that wind speed can be estimated within acceptable limits using a limited set of meteorological data. In the results obtained, it was seen that the SCG algorithm gave better results in tests in this study with less data.en_US
dc.identifier.citation0
dc.identifier.doi10.35378/gujs.764533
dc.identifier.endpage454en_US
dc.identifier.issn2147-1762
dc.identifier.issn2147-1762
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85108647299
dc.identifier.scopusqualityQ3
dc.identifier.startpage439en_US
dc.identifier.trdizinid1137342
dc.identifier.urihttps://doi.org/10.35378/gujs.764533
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1137342/comparison-of-three-different-learning-methods-of-multilayer-perceptron-neural-network-for-wind-speed-forecasting
dc.identifier.volume34en_US
dc.identifier.wosWOS:000659983900010
dc.institutionauthorTora, Hakan
dc.language.isoenen_US
dc.publisherGazi Univen_US
dc.relation.ispartofGazi University Journal of Scienceen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleComparison of Three Different Learning Methods of Multilayer Perceptron Neural Network for Wind Speed Forecastingen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublicationaafe4e2c-4ba8-4a2e-8ab5-2a1a38a6c06c
relation.isAuthorOfPublication.latestForDiscovery3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isOrgUnitOfPublication0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication.latestForDiscovery0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5

Files