Comparison of Three Different Learning Methods of Multilayer Perceptron Neural Network for Wind Speed Forecasting

dc.contributor.author Bulut, Mehmet
dc.contributor.author Tora, Hakan
dc.contributor.author Buaisha, Dr.magdi
dc.date.accessioned 2024-07-05T15:19:32Z
dc.date.available 2024-07-05T15:19:32Z
dc.date.issued 2021
dc.description Bulut, Dr. Mehmet/0000-0003-3998-1785; BULUT, Mehmet/0000-0003-3998-1785; Tora, Hakan/0000-0002-0427-483X; Buaisha, Dr.Magdi/0000-0001-9879-968X en_US
dc.description.abstract In the world, electric power is the highest need for high prosperity and comfortable living standards. The security of energy supply is an essential concept in national energy management. Therefore, ensuring the security of electricity supply requires accurate estimates of electricity demand. The share of electricity generation from renewables is significantly growing in the world. This kind of energy types are dependent on weather conditions as the wind and solar energies. There are two vital requirements to locate and measure specific systems to utilize wind power: modelling and forecasting of the wind velocity. To this end, using only 4 years of measured meteorological data, the present research attempts to estimate the related speed of wind within the Libyan Mediterranean coast with the help of ANN (artificial neural networking) with three different learning algorithms, which are Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient. Conclusions reached in this study show that wind speed can be estimated within acceptable limits using a limited set of meteorological data. In the results obtained, it was seen that the SCG algorithm gave better results in tests in this study with less data. en_US
dc.identifier.doi 10.35378/gujs.764533
dc.identifier.issn 2147-1762
dc.identifier.issn 2147-1762
dc.identifier.scopus 2-s2.0-85108647299
dc.identifier.uri https://doi.org/10.35378/gujs.764533
dc.identifier.uri https://search.trdizin.gov.tr/tr/yayin/detay/1137342/comparison-of-three-different-learning-methods-of-multilayer-perceptron-neural-network-for-wind-speed-forecasting
dc.identifier.uri https://hdl.handle.net/20.500.14411/1982
dc.language.iso en en_US
dc.publisher Gazi Univ en_US
dc.relation.ispartof Gazi University Journal of Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Comparison of Three Different Learning Methods of Multilayer Perceptron Neural Network for Wind Speed Forecasting en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Bulut, Dr. Mehmet/0000-0003-3998-1785
gdc.author.id BULUT, Mehmet/0000-0003-3998-1785
gdc.author.id Tora, Hakan/0000-0002-0427-483X
gdc.author.id Buaisha, Dr.Magdi/0000-0001-9879-968X
gdc.author.scopusid 57224939203
gdc.author.scopusid 6506642154
gdc.author.scopusid 57211402383
gdc.author.wosid Bulut, Dr. Mehmet/ADN-7823-2022
gdc.author.wosid BULUT, Mehmet/I-9715-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Tanımlanmamış Kurum,ATILIM ÜNİVERSİTESİ,Yabancı Kurumlar en_US
gdc.description.endpage 454 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 439 en_US
gdc.description.volume 34 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3118640601
gdc.identifier.trdizinid 1137342
gdc.identifier.wos WOS:000659983900010
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.9190563E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords Wind speed forecasting;Energy resources;Artificial neural network;Renewable energy
gdc.oaire.popularity 8.496431E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.55008854
gdc.openalex.normalizedpercentile 0.66
gdc.opencitations.count 5
gdc.plumx.mendeley 12
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.virtual.author Tora, Hakan
gdc.wos.citedcount 6
relation.isAuthorOfPublication 3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublication aafe4e2c-4ba8-4a2e-8ab5-2a1a38a6c06c
relation.isAuthorOfPublication.latestForDiscovery 3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isOrgUnitOfPublication 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication 032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication e28bb977-cadc-4429-b547-973b099c3ce8
relation.isOrgUnitOfPublication dc6a418c-f202-4eec-abf8-fc53a73112c8
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5

Files