Reinforcement learning using fully connected, attention, and transformer models in knapsack problem solving

dc.authoridYILDIZ, Beytullah/0000-0001-7664-5145
dc.authorscopusid14632851900
dc.contributor.authorYildiz, Beytullah
dc.contributor.authorYıldız, Beytullah
dc.contributor.authorYıldız, Beytullah
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:21:19Z
dc.date.available2024-07-05T15:21:19Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Yildiz, Beytullah] Atilim Univ, Sch Engn, Dept Software Engn, Ankara, Turkeyen_US
dc.descriptionYILDIZ, Beytullah/0000-0001-7664-5145en_US
dc.description.abstractKnapsack is a combinatorial optimization problem that involves a variety of resource allocation challenges. It is defined as non-deterministic polynomial time (NP) hard and has a wide range of applications. Knapsack problem (KP) has been studied in applied mathematics and computer science for decades. Many algorithms that can be classified as exact or approximate solutions have been proposed. Under the category of exact solutions, algorithms such as branch-and-bound and dynamic programming and the approaches obtained by combining these algorithms can be classified. Due to the fact that exact solutions require a long processing time, many approximate methods have been introduced for knapsack solution. In this research, deep Q-learning using models containing fully connected layers, attention, and transformer as function estimators were used to provide the solution for KP. We observed that deep Q-networks, which continued their training by observing the reward signals provided by the knapsack environment we developed, optimized the total reward gained over time. The results showed that our approaches give near-optimum solutions and work about 40 times faster than an exact algorithm using dynamic programming.en_US
dc.identifier.citation1
dc.identifier.doi10.1002/cpe.6509
dc.identifier.issn1532-0626
dc.identifier.issn1532-0634
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85112660920
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/cpe.6509
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2049
dc.identifier.volume34en_US
dc.identifier.wosWOS:000682738000001
dc.identifier.wosqualityQ3
dc.institutionauthorYıldız, Beytullah
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectattentionen_US
dc.subjectcombinatorial optimization problemen_US
dc.subjectdeep Q-learningen_US
dc.subjectknapsacken_US
dc.subjectreinforcement learningen_US
dc.subjecttransformeren_US
dc.titleReinforcement learning using fully connected, attention, and transformer models in knapsack problem solvingen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication.latestForDiscovery8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections