ANN-assisted forecasting of adsorption efficiency to remove heavy metals

dc.authoridBuaisha, Dr.Magdi/0000-0001-9879-968X
dc.authoridOzalp Yaman, Seniz/0000-0002-4166-0529
dc.authorscopusid57211402383
dc.authorscopusid11139496600
dc.authorscopusid56054555600
dc.authorwosidYaman, Şeniz Özalp/AAK-1854-2021
dc.contributor.authorBuaısha, Magdi
dc.contributor.authorBalku, Şaziye
dc.contributor.authorYaman, Şeniz Özalp
dc.contributor.otherEnergy Systems Engineering
dc.contributor.otherChemical Engineering
dc.date.accessioned2024-07-05T15:28:15Z
dc.date.available2024-07-05T15:28:15Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-tempATILIM ÜNİVERSİTESİ,ATILIM ÜNİVERSİTESİ,ATILIM ÜNİVERSİTESİen_US
dc.descriptionBuaisha, Dr.Magdi/0000-0001-9879-968X; Ozalp Yaman, Seniz/0000-0002-4166-0529en_US
dc.description.abstractIn wastewater treatment, scientific and practical models utilizing numerical computational techniques suchas artificial neural networks (ANNs) can significantly help to improve the process as a whole through adsorption systems.In the modeling of the adsorption efficiency for heavy metals from wastewater, some kinetic models have been used such as pseudo first-order and second-order. The present work develops an ANN model to forecast the adsorption efficiency of heavy metals such as zinc, nickel, and copper by extracting experimental data from three case studies. To do this, we apply trial-and-error to find the most ideal ANN settings, the efficiency of which is determined by mean square error (MSE) and coefficient of determination (R2). According to the results, the model can forecast adsorption efficiency percent (AE%) with a tangent sigmoid transfer function (tansig) in the hidden layer with 10 neurons and a linear transferfunction (purelin) in the output layer. Furthermore, the Levenberg–Marquardt algorithm is seen to be most ideal for training the algorithm for the case studies, with the lowest MSE and high R2 . In addition, the experimental results and the results predicted by the model with the ANN were found to be highly compatible with each other.en_US
dc.identifier.citation0
dc.identifier.doi10.3906/kim-1902-28
dc.identifier.endpage1424en_US
dc.identifier.issn1300-0527
dc.identifier.issn1303-6130
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85073800712
dc.identifier.scopusqualityQ3
dc.identifier.startpage1407en_US
dc.identifier.trdizinid336065
dc.identifier.urihttps://doi.org/10.3906/kim-1902-28
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/336065/ann-assisted-forecasting-of-adsorption-efficiency-to-remove-heavy-metals
dc.identifier.volume43en_US
dc.identifier.wosWOS:000489111500014
dc.identifier.wosqualityQ4
dc.institutionauthorBalku, Şaziye
dc.institutionauthorÖzalp Yaman, Şeniz
dc.language.isoenen_US
dc.publisherTubitak Scientific & Technological Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Chemistryen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectKimyaen_US
dc.subjectAnalitiken_US
dc.subjectKimyaen_US
dc.subjectUygulamalıen_US
dc.subjectKimyaen_US
dc.subjectOrganiken_US
dc.subjectKimyaen_US
dc.subjectTıbbien_US
dc.subjectMühendisliken_US
dc.subjectKimyaen_US
dc.subjectKimyaen_US
dc.subjectİnorganik ve Nükleeren_US
dc.titleANN-assisted forecasting of adsorption efficiency to remove heavy metalsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione37b4a4b-c7b7-437f-928d-c0e346c18c8e
relation.isAuthorOfPublicationf3a864db-9deb-4073-bcf2-7569cbfd9610
relation.isAuthorOfPublication.latestForDiscoverye37b4a4b-c7b7-437f-928d-c0e346c18c8e
relation.isOrgUnitOfPublication80f84cab-4b75-401b-b4b1-f2ec308f3067
relation.isOrgUnitOfPublicationbebae599-17cc-4f0b-997b-a4164a19b94b
relation.isOrgUnitOfPublication.latestForDiscovery80f84cab-4b75-401b-b4b1-f2ec308f3067

Files