Acoustic control of flow over NACA 2415 aerofoil at low reynolds numbers

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Springer International Publishing

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Abstract

Within the concept of this study, first low Reynolds number flow phenomena, including laminar separation bubble (LSB) and stall were explained. Then a literature review on the acoustic flow control was presented in three categories: flow control with constant frequency, flow control with constant amplitude, and flow control with variable frequency and amplitude. Aside from the review part, results of a comprehensive experimental study on the effects of acoustic flow control at low Reynolds numbers were presented. Within the scope of this experimental study, the effects of both parallel and perpendicular acoustic flow control were examined by means of pressure measurements, force measurements, hot-wire anemometry, flow visualization, and particle image velocimetry (PIV). In order to establish a baseline data, all of the measurements were first applied for the no control case. The effects of acoustic control were examined especially on the characteristics of LSB and stall. It was found that the acoustic excitation can be employed to decrease the height and length of LSB leading to increased lift coefficient and decreased drag coefficient. Also, acoustic flow control increased the angle of stall. It was also seen that the effective excitation frequency increases also, but the range of Zaman number (St/Re0.5) based on effective frequency still is approximately same with increasing Reynolds numbers. Finally, it was shown that the general aerodynamics performance of an aerofoil at low Reynolds numbers can easily be enhanced by employing acoustic flow control, and the parameters of the acoustic flow control can easily be adjusted in order to keep up with the changing conditions of flow. © Springer International Publishing Switzerland 2016.

Description

Keywords

Acoustic control, Aerofoil, Bubble, Dantec, Flow, Low reynolds numbers, NACA 2415, Pressure, Turbulence

Turkish CoHE Thesis Center URL

Citation

9

WoS Q

Scopus Q

Source

Sustainable Aviation: Energy and Environmental Issues

Volume

Issue

Start Page

375

End Page

420

Collections