Amine-functionalized graphene nanosheet-supported PdAuNi alloy nanoparticles: efficient nanocatalyst for formic acid dehydrogenation
No Thumbnail Available
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of Chemistry
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Formic acid (HCOOH), a major by-product of biomass processing with high energy density, stability and non-toxicity, has a great potential as a safe and a convenient liquid hydrogen (H2) storage material for combustion engines and fuel cell applications. However, high-purity hydrogen release from the catalytic decomposition of aqueous formic acid solution at desirable rates under mild conditions stands as a major challenge that needs to be solved for the practical use of formic acid in on-demand hydrogen generation systems. Described herein is a new nanocatalyst system comprised of 3-aminopropyltriethoxysilane-functionalized graphene nanosheet-supported PdAuNi alloy nanoparticles (PdAuNi/f-GNS), which can reproducibly be prepared by following double solvent method combined with liquid-phase chemical reduction, all at room temperature. PdAuNi/f-GNS selectively catalyzes the decomposition of aqueous formic acid through the dehydrogenation pathway (∼100% H2 selectivity), in the absence of any promoting additives (alkali formates, Brønsted bases, Lewis bases, etc.). PdAuNi/f-GNS nanocatalyst provides CO-free H2 generation with a turnover frequency of 1090 mol H2 mol metal−1 h−1 in the additive-free dehydrogenation of formic acid at almost complete conversion (≥92%) even at room temperature. The catalytic activity provided by PdAuNi/f-GNS nanocatalyst is higher than those obtained with the heterogeneous catalysts reported to date for the additive-free dehydrogenation of formic acid. Moreover, PdAuNi/f-GNS nanoparticles show high durability against sintering, clumping and leaching throughout the catalytic runs, so that the PdAuNi/f-GNS nanocatalyst retains almost its inherent catalytic activity and selectivity at the end of the 10th recycle. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
Description
Keywords
[No Keyword Available]
Turkish CoHE Thesis Center URL
Fields of Science
Citation
25
WoS Q
Q2
Scopus Q
Q3
Source
New Journal of Chemistry
Volume
42
Issue
19
Start Page
16103
End Page
16114