A Survey of Covid-19 Diagnosis Using Routine Blood Tests With the Aid of Artificial Intelligence Techniques

dc.contributor.author Habashi, Soheila Abbasi
dc.contributor.author Koyuncu, Murat
dc.contributor.author Alizadehsani, Roohallah
dc.contributor.other Information Systems Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:25:10Z
dc.date.available 2024-07-05T15:25:10Z
dc.date.issued 2023
dc.description Koyuncu, Murat/0000-0003-1958-5945; abbasi habashi, soheila/0000-0003-2839-7938; Alizadehsani, Roohallah/0000-0003-0898-5054 en_US
dc.description.abstract Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), causing a disease called COVID-19, is a class of acute respiratory syndrome that has considerably affected the global economy and healthcare system. This virus is diagnosed using a traditional technique known as the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. However, RT-PCR customarily outputs a lot of false-negative and incorrect results. Current works indicate that COVID-19 can also be diagnosed using imaging resolutions, including CT scans, X-rays, and blood tests. Nevertheless, X-rays and CT scans cannot always be used for patient screening because of high costs, radiation doses, and an insufficient number of devices. Therefore, there is a requirement for a less expensive and faster diagnostic model to recognize the positive and negative cases of COVID-19. Blood tests are easily performed and cost less than RT-PCR and imaging tests. Since biochemical parameters in routine blood tests vary during the COVID-19 infection, they may supply physicians with exact information about the diagnosis of COVID-19. This study reviewed some newly emerging artificial intelligence (AI)-based methods to diagnose COVID-19 using routine blood tests. We gathered information about research resources and inspected 92 articles that were carefully chosen from a variety of publishers, such as IEEE, Springer, Elsevier, and MDPI. Then, these 92 studies are classified into two tables which contain articles that use machine Learning and deep Learning models to diagnose COVID-19 while using routine blood test datasets. In these studies, for diagnosing COVID-19, Random Forest and logistic regression are the most widely used machine learning methods and the most widely used performance metrics are accuracy, sensitivity, specificity, and AUC. Finally, we conclude by discussing and analyzing these studies which use machine learning and deep learning models and routine blood test datasets for COVID-19 detection. This survey can be the starting point for a novice-/beginner-level researcher to perform on COVID-19 classification. en_US
dc.identifier.doi 10.3390/diagnostics13101749
dc.identifier.issn 2075-4418
dc.identifier.scopus 2-s2.0-85160542524
dc.identifier.uri https://doi.org/10.3390/diagnostics13101749
dc.identifier.uri https://hdl.handle.net/20.500.14411/2515
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Diagnostics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject COVID-19 en_US
dc.subject blood tests en_US
dc.subject RT-PCR en_US
dc.subject machine learning en_US
dc.subject deep learning en_US
dc.title A Survey of Covid-19 Diagnosis Using Routine Blood Tests With the Aid of Artificial Intelligence Techniques en_US
dc.type Review en_US
dspace.entity.type Publication
gdc.author.id Koyuncu, Murat/0000-0003-1958-5945
gdc.author.id abbasi habashi, soheila/0000-0003-2839-7938
gdc.author.id Alizadehsani, Roohallah/0000-0003-0898-5054
gdc.author.institutional Koyuncu, Murat
gdc.author.scopusid 58293681600
gdc.author.scopusid 7004305370
gdc.author.scopusid 55328861400
gdc.author.wosid Alizadehsani, Roohallah/ABA-6810-2022
gdc.author.wosid Koyuncu, Murat/C-9407-2017
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::review
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Habashi, Soheila Abbasi] Atilim Univ, Dept Comp Engn, TR-06830 Ankara, Turkiye; [Koyuncu, Murat] Atilim Univ, Dept Informat Syst Engn, TR-06830 Ankara, Turkiye; [Alizadehsani, Roohallah] Deakin Univ, Inst Intelligent Syst Res & Innovat IISRI, Geelong, Vic 3216, Australia en_US
gdc.description.issue 10 en_US
gdc.description.publicationcategory Diğer en_US
gdc.description.startpage 1749
gdc.description.volume 13 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4376875246
gdc.identifier.pmid 37238232
gdc.identifier.wos WOS:000996945100001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 2.7882845E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Medicine (General)
gdc.oaire.keywords machine learning
gdc.oaire.keywords R5-920
gdc.oaire.keywords RT-PCR
gdc.oaire.keywords COVID-19
gdc.oaire.keywords deep learning
gdc.oaire.keywords Review
gdc.oaire.keywords blood tests
gdc.oaire.popularity 6.2408843E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.546
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 5
gdc.plumx.mendeley 25
gdc.plumx.newscount 1
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.wos.citedcount 7
relation.isAuthorOfPublication 948643aa-7723-4c65-8da8-fcc884405cd1
relation.isAuthorOfPublication.latestForDiscovery 948643aa-7723-4c65-8da8-fcc884405cd1
relation.isOrgUnitOfPublication cf0fb36c-0500-438e-b4cc-ad1d4ef25579
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery cf0fb36c-0500-438e-b4cc-ad1d4ef25579

Files

Collections