Deep Learning-Based Vehicle Classification for Low Quality Images

dc.contributor.author Tas, Sumeyra
dc.contributor.author Sari, Ozgen
dc.contributor.author Dalveren, Yaser
dc.contributor.author Pazar, Senol
dc.contributor.author Kara, Ali
dc.contributor.author Derawi, Mohammad
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:17:45Z
dc.date.available 2024-07-05T15:17:45Z
dc.date.issued 2022
dc.description Dalveren, Yaser/0000-0002-9459-0042; Derawi, Mohammad/0000-0003-0448-7613; Kara, Ali/0000-0002-9739-7619; SARI, Ozgen/0000-0002-5477-6387; Pazar, Senol/0000-0003-3807-6601 en_US
dc.description.abstract This study proposes a simple convolutional neural network (CNN)-based model for vehicle classification in low resolution surveillance images collected by a standard security camera installed distant from a traffic scene. In order to evaluate its effectiveness, the proposed model is tested on a new dataset containing tiny (100 x 100 pixels) and low resolution (96 dpi) vehicle images. The proposed model is then compared with well-known VGG16-based CNN models in terms of accuracy and complexity. Results indicate that although the well-known models provide higher accuracy, the proposed method offers an acceptable accuracy (92.9%) as well as a simple and lightweight solution for vehicle classification in low quality images. Thus, it is believed that this study might provide useful perception and understanding for further research on the use of standard low-cost cameras to enhance the ability of the intelligent systems such as intelligent transportation system applications. en_US
dc.identifier.doi 10.3390/s22134740
dc.identifier.issn 1424-8220
dc.identifier.scopus 2-s2.0-85132398746
dc.identifier.uri https://doi.org/10.3390/s22134740
dc.identifier.uri https://hdl.handle.net/20.500.14411/1785
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Sensors
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject vehicle classification en_US
dc.subject convolutional neural network en_US
dc.subject deep learning en_US
dc.subject low resolution en_US
dc.subject low quality en_US
dc.title Deep Learning-Based Vehicle Classification for Low Quality Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Dalveren, Yaser/0000-0002-9459-0042
gdc.author.id Derawi, Mohammad/0000-0003-0448-7613
gdc.author.id Kara, Ali/0000-0002-9739-7619
gdc.author.id SARI, Ozgen/0000-0002-5477-6387
gdc.author.id Pazar, Senol/0000-0003-3807-6601
gdc.author.institutional Dalveren, Yaser
gdc.author.institutional Kara, Ali
gdc.author.scopusid 57754782800
gdc.author.scopusid 57754453600
gdc.author.scopusid 51763497600
gdc.author.scopusid 6505962073
gdc.author.scopusid 7102824862
gdc.author.scopusid 35408917600
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Tas, Sumeyra; Sari, Ozgen] Atilim Univ, Grad Sch Nat & Appl Sci, TR-06830 Ankara, Turkey; [Dalveren, Yaser] Atilim Univ, Dept Avion, TR-06830 Ankara, Turkey; [Pazar, Senol] Biruni Univ, Dept Comp Programming, TR-34010 Istanbul, Turkey; [Pazar, Senol] Yildiz Tech Univ Ikitelli Technopk, Ankageo Co Ltd, TR-34220 Istanbul, Turkey; [Kara, Ali] Gazi Univ, Dept Elect & Elect Engn, TR-06570 Ankara, Turkey; [Derawi, Mohammad] Norwegian Univ Sci & Technol, Dept Elect Syst, N-2815 Gjovik, Norway en_US
gdc.description.issue 13 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 4740
gdc.description.volume 22 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4283399757
gdc.identifier.pmid 35808251
gdc.identifier.wos WOS:000824079100001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 26.0
gdc.oaire.influence 4.921655E-9
gdc.oaire.isgreen true
gdc.oaire.keywords vehicle classification; convolutional neural network; deep learning; low resolution; low quality
gdc.oaire.keywords low quality
gdc.oaire.keywords Chemical technology
gdc.oaire.keywords Data Collection
gdc.oaire.keywords convolutional neural network
gdc.oaire.keywords deep learning
gdc.oaire.keywords Convolutional Neural Network
gdc.oaire.keywords TP1-1185
gdc.oaire.keywords Article
gdc.oaire.keywords vehicle classification
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Low Resolution
gdc.oaire.keywords Vehicle Classification
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.keywords Low Quality
gdc.oaire.keywords low resolution
gdc.oaire.popularity 2.3243006E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.fwci 3.253
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 18
gdc.plumx.crossrefcites 15
gdc.plumx.mendeley 32
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 25
gdc.scopus.citedcount 25
gdc.wos.citedcount 10
relation.isAuthorOfPublication 55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isAuthorOfPublication be728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery 55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections