Deep Learning-Based Vehicle Classification for Low Quality Images
dc.authorid | Dalveren, Yaser/0000-0002-9459-0042 | |
dc.authorid | Derawi, Mohammad/0000-0003-0448-7613 | |
dc.authorid | Kara, Ali/0000-0002-9739-7619 | |
dc.authorid | SARI, Ozgen/0000-0002-5477-6387 | |
dc.authorid | Pazar, Senol/0000-0003-3807-6601 | |
dc.authorscopusid | 57754782800 | |
dc.authorscopusid | 57754453600 | |
dc.authorscopusid | 51763497600 | |
dc.authorscopusid | 6505962073 | |
dc.authorscopusid | 7102824862 | |
dc.authorscopusid | 35408917600 | |
dc.contributor.author | Tas, Sumeyra | |
dc.contributor.author | Sari, Ozgen | |
dc.contributor.author | Dalveren, Yaser | |
dc.contributor.author | Pazar, Senol | |
dc.contributor.author | Kara, Ali | |
dc.contributor.author | Derawi, Mohammad | |
dc.contributor.other | Department of Electrical & Electronics Engineering | |
dc.date.accessioned | 2024-07-05T15:17:45Z | |
dc.date.available | 2024-07-05T15:17:45Z | |
dc.date.issued | 2022 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Tas, Sumeyra; Sari, Ozgen] Atilim Univ, Grad Sch Nat & Appl Sci, TR-06830 Ankara, Turkey; [Dalveren, Yaser] Atilim Univ, Dept Avion, TR-06830 Ankara, Turkey; [Pazar, Senol] Biruni Univ, Dept Comp Programming, TR-34010 Istanbul, Turkey; [Pazar, Senol] Yildiz Tech Univ Ikitelli Technopk, Ankageo Co Ltd, TR-34220 Istanbul, Turkey; [Kara, Ali] Gazi Univ, Dept Elect & Elect Engn, TR-06570 Ankara, Turkey; [Derawi, Mohammad] Norwegian Univ Sci & Technol, Dept Elect Syst, N-2815 Gjovik, Norway | en_US |
dc.description | Dalveren, Yaser/0000-0002-9459-0042; Derawi, Mohammad/0000-0003-0448-7613; Kara, Ali/0000-0002-9739-7619; SARI, Ozgen/0000-0002-5477-6387; Pazar, Senol/0000-0003-3807-6601 | en_US |
dc.description.abstract | This study proposes a simple convolutional neural network (CNN)-based model for vehicle classification in low resolution surveillance images collected by a standard security camera installed distant from a traffic scene. In order to evaluate its effectiveness, the proposed model is tested on a new dataset containing tiny (100 x 100 pixels) and low resolution (96 dpi) vehicle images. The proposed model is then compared with well-known VGG16-based CNN models in terms of accuracy and complexity. Results indicate that although the well-known models provide higher accuracy, the proposed method offers an acceptable accuracy (92.9%) as well as a simple and lightweight solution for vehicle classification in low quality images. Thus, it is believed that this study might provide useful perception and understanding for further research on the use of standard low-cost cameras to enhance the ability of the intelligent systems such as intelligent transportation system applications. | en_US |
dc.identifier.citation | 6 | |
dc.identifier.doi | 10.3390/s22134740 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.issue | 13 | en_US |
dc.identifier.pmid | 35808251 | |
dc.identifier.scopus | 2-s2.0-85132398746 | |
dc.identifier.uri | https://doi.org/10.3390/s22134740 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1785 | |
dc.identifier.volume | 22 | en_US |
dc.identifier.wos | WOS:000824079100001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Dalveren, Yaser | |
dc.institutionauthor | Kara, Ali | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | vehicle classification | en_US |
dc.subject | convolutional neural network | en_US |
dc.subject | deep learning | en_US |
dc.subject | low resolution | en_US |
dc.subject | low quality | en_US |
dc.title | Deep Learning-Based Vehicle Classification for Low Quality Images | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 55e082ac-14c0-46a6-b8fa-50c5e40b59c8 | |
relation.isAuthorOfPublication | be728837-c599-49c1-8e8d-81b90219bb15 | |
relation.isAuthorOfPublication.latestForDiscovery | 55e082ac-14c0-46a6-b8fa-50c5e40b59c8 | |
relation.isOrgUnitOfPublication | c3c9b34a-b165-4cd6-8959-dc25e91e206b | |
relation.isOrgUnitOfPublication.latestForDiscovery | c3c9b34a-b165-4cd6-8959-dc25e91e206b |