Deep Learning-Based Vehicle Classification for Low Quality Images

dc.authoridDalveren, Yaser/0000-0002-9459-0042
dc.authoridDerawi, Mohammad/0000-0003-0448-7613
dc.authoridKara, Ali/0000-0002-9739-7619
dc.authoridSARI, Ozgen/0000-0002-5477-6387
dc.authoridPazar, Senol/0000-0003-3807-6601
dc.authorscopusid57754782800
dc.authorscopusid57754453600
dc.authorscopusid51763497600
dc.authorscopusid6505962073
dc.authorscopusid7102824862
dc.authorscopusid35408917600
dc.contributor.authorTas, Sumeyra
dc.contributor.authorSari, Ozgen
dc.contributor.authorDalveren, Yaser
dc.contributor.authorPazar, Senol
dc.contributor.authorKara, Ali
dc.contributor.authorDerawi, Mohammad
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:17:45Z
dc.date.available2024-07-05T15:17:45Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Tas, Sumeyra; Sari, Ozgen] Atilim Univ, Grad Sch Nat & Appl Sci, TR-06830 Ankara, Turkey; [Dalveren, Yaser] Atilim Univ, Dept Avion, TR-06830 Ankara, Turkey; [Pazar, Senol] Biruni Univ, Dept Comp Programming, TR-34010 Istanbul, Turkey; [Pazar, Senol] Yildiz Tech Univ Ikitelli Technopk, Ankageo Co Ltd, TR-34220 Istanbul, Turkey; [Kara, Ali] Gazi Univ, Dept Elect & Elect Engn, TR-06570 Ankara, Turkey; [Derawi, Mohammad] Norwegian Univ Sci & Technol, Dept Elect Syst, N-2815 Gjovik, Norwayen_US
dc.descriptionDalveren, Yaser/0000-0002-9459-0042; Derawi, Mohammad/0000-0003-0448-7613; Kara, Ali/0000-0002-9739-7619; SARI, Ozgen/0000-0002-5477-6387; Pazar, Senol/0000-0003-3807-6601en_US
dc.description.abstractThis study proposes a simple convolutional neural network (CNN)-based model for vehicle classification in low resolution surveillance images collected by a standard security camera installed distant from a traffic scene. In order to evaluate its effectiveness, the proposed model is tested on a new dataset containing tiny (100 x 100 pixels) and low resolution (96 dpi) vehicle images. The proposed model is then compared with well-known VGG16-based CNN models in terms of accuracy and complexity. Results indicate that although the well-known models provide higher accuracy, the proposed method offers an acceptable accuracy (92.9%) as well as a simple and lightweight solution for vehicle classification in low quality images. Thus, it is believed that this study might provide useful perception and understanding for further research on the use of standard low-cost cameras to enhance the ability of the intelligent systems such as intelligent transportation system applications.en_US
dc.identifier.citation6
dc.identifier.doi10.3390/s22134740
dc.identifier.issn1424-8220
dc.identifier.issue13en_US
dc.identifier.pmid35808251
dc.identifier.scopus2-s2.0-85132398746
dc.identifier.urihttps://doi.org/10.3390/s22134740
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1785
dc.identifier.volume22en_US
dc.identifier.wosWOS:000824079100001
dc.identifier.wosqualityQ2
dc.institutionauthorDalveren, Yaser
dc.institutionauthorKara, Ali
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectvehicle classificationen_US
dc.subjectconvolutional neural networken_US
dc.subjectdeep learningen_US
dc.subjectlow resolutionen_US
dc.subjectlow qualityen_US
dc.titleDeep Learning-Based Vehicle Classification for Low Quality Imagesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isAuthorOfPublicationbe728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery55e082ac-14c0-46a6-b8fa-50c5e40b59c8
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections