Fixed Point Theory in Metric Type Spaces

dc.authorscopusid 36013313700
dc.authorscopusid 16678995500
dc.authorscopusid 36049459000
dc.authorscopusid 56874899500
dc.contributor.author Agarwal,R.P.
dc.contributor.author Karapinar,E.
dc.contributor.author O’regan,D.
dc.contributor.author Roldán-López-De-Hierro,A.F.
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:44:37Z
dc.date.available 2024-07-05T15:44:37Z
dc.date.issued 2016
dc.department Atılım University en_US
dc.department-temp Agarwal R.P., Department of Mathematics, Texas A and M University-Kingsville, Kingsville, TX, United States; Karapinar E., Department of Mathematics, Atilim University Incek, Ankara, Turkey; O’regan D., National University of Ireland, Galway, Ireland; Roldán-López-De-Hierro A.F., Department of Quantitative Methods for Economics and Business, University of Granada, Granada, Spain en_US
dc.description.abstract Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research. © David Ralph 2015. en_US
dc.identifier.citationcount 97
dc.identifier.doi 10.1007/978-3-319-24082-4
dc.identifier.endpage 385 en_US
dc.identifier.isbn 978-331924082-4
dc.identifier.isbn 978-331924080-0
dc.identifier.scopus 2-s2.0-84969218958
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-319-24082-4
dc.identifier.uri https://hdl.handle.net/20.500.14411/3797
dc.institutionauthor Karapınar, Erdal
dc.language.iso en en_US
dc.publisher Springer International Publishing en_US
dc.relation.ispartof Fixed Point Theory in Metric Type Spaces en_US
dc.relation.publicationcategory Kitap - Uluslararası en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 101
dc.subject [No Keyword Available] en_US
dc.title Fixed Point Theory in Metric Type Spaces en_US
dc.type Book en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections