A Comparison of Regression, Neural Network and Fuzzy Logic Models for Estimating Chlorophyll-A Concentrations in Reservoirs

dc.authoridChen, Ding-Geng/0000-0002-3199-8665
dc.authorwosidChen, Ding-Geng/GRR-2103-2022
dc.contributor.authorChen, Ding-Geng
dc.contributor.authorSoyupak, Selcuk
dc.date.accessioned2024-10-06T10:57:33Z
dc.date.available2024-10-06T10:57:33Z
dc.date.issued2005
dc.departmentAtılım Universityen_US
dc.department-temp[Chen, Ding-Geng] Int Pacific Halibut Commiss, POB 95009, Seattle, WA 98145 USA; [Soyupak, Selcuk] Atilim Univ, Civil Engn Dept, TR-06836 Ankara, Turkeyen_US
dc.descriptionChen, Ding-Geng/0000-0002-3199-8665en_US
dc.description.abstractA comparison is conducted in this paper for the multiple linear regression, neural network and fuzzy logic models for their ability to estimate pseudo steady state chlorophyll-a concentrations in a very large and deep dam reservoir that exhibits high spatial and temporal variability. The utilized data set include chlorophyll-a concentrations as an indicator of primary productivity as well as several other water quality variables such as alkalinity, PO4 phosphorus, water temperature and dissolved oxygen concentrations as independent environmental variables. Using the conventional model criteria of correlation coefficient and mean square errors, the fuzzy logic model performed the best with the neural network model better than multiple linear regression model.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.citation0
dc.identifier.doi[WOS-DOI-BELIRLENECEK-603]
dc.identifier.endpage78en_US
dc.identifier.issn0972-9984
dc.identifier.issn0973-7308
dc.identifier.issue1en_US
dc.identifier.startpage65en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/8747
dc.identifier.volume3en_US
dc.identifier.wosWOS:000420082000003
dc.language.isoenen_US
dc.publisherCentre Environment Social & Economic Research Publ-ceseren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMultiple linear regression modelen_US
dc.subjectfuzzy logic modelen_US
dc.subjectneural network modelen_US
dc.subjectdam reservoir managementen_US
dc.subjecteutrophicationen_US
dc.titleA Comparison of Regression, Neural Network and Fuzzy Logic Models for Estimating Chlorophyll-A Concentrations in Reservoirsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Collections