Real-Time Learning and Monitoring System in Fighting Against Sars-Cov in a Private Indoor Environment

dc.contributor.author Erisen, Serdar
dc.date.accessioned 2024-07-05T15:24:55Z
dc.date.available 2024-07-05T15:24:55Z
dc.date.issued 2022
dc.description Erişen, Serdar/0000-0002-7192-0889 en_US
dc.description.abstract The SARS-CoV-2 virus has posed formidable challenges that must be tackled through scientific and technological investigations on each environmental scale. This research aims to learn and report about the current state of user activities, in real-time, in a specially designed private indoor environment with sensors in infection transmission control of SARS-CoV-2. Thus, a real-time learning system that evolves and updates with each incoming piece of data from the environment is developed to predict user activities categorized for remote monitoring. Accordingly, various experiments are conducted in the private indoor space. Multiple sensors, with their inputs, are analyzed through the experiments. The experiment environment, installed with microgrids and Internet of Things (IoT) devices, has provided correlating data of various sensors from that special care context during the pandemic. The data is applied to classify user activities and develop a real-time learning and monitoring system to predict the IoT data. The microgrids were operated with the real-time learning system developed by comprehensive experiments on classification learning, regression learning, Error-Correcting Output Codes (ECOC), and deep learning models. With the help of machine learning experiments, data optimization, and the multilayered-tandem organization of the developed neural networks, the efficiency of this real-time monitoring system increases in learning the activity of users and predicting their actions, which are reported as feedback on the monitoring interfaces. The developed learning system predicts the real-time IoT data, accurately, in less than 5 milliseconds and generates big data that can be deployed for different usages in larger-scale facilities, networks, and e-health services. en_US
dc.identifier.doi 10.3390/s22187001
dc.identifier.issn 1424-8220
dc.identifier.scopus 2-s2.0-85138331319
dc.identifier.uri https://doi.org/10.3390/s22187001
dc.identifier.uri https://hdl.handle.net/20.500.14411/2477
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Sensors
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject SARS-CoV-2 en_US
dc.subject real-time learning and monitoring en_US
dc.subject big data en_US
dc.subject indoor air en_US
dc.subject user activity en_US
dc.subject infection transmission control en_US
dc.title Real-Time Learning and Monitoring System in Fighting Against Sars-Cov in a Private Indoor Environment en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Erişen, Serdar/0000-0002-7192-0889
gdc.author.scopusid 57218221719
gdc.author.wosid Erişen, Serdar/B-3030-2017
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Erisen, Serdar] Atilim Univ, Dept Architecture, TR-06830 Ankara, Turkey en_US
gdc.description.issue 18 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 7001
gdc.description.volume 22 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4296047151
gdc.identifier.pmid 36146346
gdc.identifier.wos WOS:000857650200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.6655829E-9
gdc.oaire.isgreen true
gdc.oaire.keywords SARS-CoV-2
gdc.oaire.keywords Chemical technology
gdc.oaire.keywords Internet of Things
gdc.oaire.keywords COVID-19
gdc.oaire.keywords indoor air
gdc.oaire.keywords TP1-1185
gdc.oaire.keywords user activity
gdc.oaire.keywords Article
gdc.oaire.keywords big data
gdc.oaire.keywords real-time learning and monitoring
gdc.oaire.keywords Humans
gdc.oaire.keywords SARS-CoV-2; real-time learning and monitoring; big data; indoor air; user activity; infection transmission control
gdc.oaire.keywords infection transmission control
gdc.oaire.keywords Pandemics
gdc.oaire.keywords Monitoring, Physiologic
gdc.oaire.popularity 6.3032277E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration National
gdc.openalex.fwci 0.64588032
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 6
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 49
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.virtual.author Erişen, Serdar
gdc.wos.citedcount 4
relation.isAuthorOfPublication 79857cf9-13bf-42fb-932a-31d21cb167c6
relation.isAuthorOfPublication.latestForDiscovery 79857cf9-13bf-42fb-932a-31d21cb167c6
relation.isOrgUnitOfPublication f9fa2b5c-d081-4ee8-828c-ecfaa869079e
relation.isOrgUnitOfPublication 951fac84-03c9-4e5f-a719-387e9041c9c3
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 4e8a6212-3f7f-4a23-a367-c8bed86d202c
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery f9fa2b5c-d081-4ee8-828c-ecfaa869079e

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Real-Time Learning and Monitoring Serdar Erişen 2022sensors-22-07001-with-cover.pdf
Size:
6.13 MB
Format:
Adobe Portable Document Format

Collections