Modeling of Dielectrophoretic Particle Motion: Point Particle Versus Finite-Sized Particle

dc.authorid Baranoglu, Besim/0000-0003-2005-050X
dc.authorid Cetin, Barbaros/0000-0001-9824-4000
dc.authorid Cetin, Barbaros/0000-0001-9824-4000
dc.authorscopusid 23979193400
dc.authorscopusid 57193410188
dc.authorscopusid 15831218000
dc.authorwosid Baranoglu, Besim/JXX-8230-2024
dc.authorwosid Cetin, Barbaros/T-7665-2019
dc.authorwosid Cetin, Barbaros/J-2911-2014
dc.contributor.author Cetin, Barbaros
dc.contributor.author Oner, S. Dogan
dc.contributor.author Baranoglu, Besim
dc.contributor.other Manufacturing Engineering
dc.date.accessioned 2024-07-05T15:29:06Z
dc.date.available 2024-07-05T15:29:06Z
dc.date.issued 2017
dc.department Atılım University en_US
dc.department-temp [Cetin, Barbaros; Oner, S. Dogan] Bilkent Univ, Dept Mech Engn, Microfluid & Lab On A Chip Res Grp, TR-06800 Ankara, Turkey; [Baranoglu, Besim] Atilim Univ, Dept Mfg Engn, Ankara, Turkey; [Baranoglu, Besim] Atilim Univ, Computat Sci & Engn Lab, Ankara, Turkey en_US
dc.description Baranoglu, Besim/0000-0003-2005-050X; Cetin, Barbaros/0000-0001-9824-4000; Cetin, Barbaros/0000-0001-9824-4000 en_US
dc.description.abstract Dielectrophoresis (DEP) is a very popular technique for microfluidic bio-particle manipulation. For the design of a DEP-based microfluidic device, simulation of the particle trajectory within the microchannel network is crucial. There are basically two approaches: (i) point-particle approach and (ii) finite-sized particle approach. In this study, many aspects of both approaches are discussed for the simulation of direct current DEP, alternating current DEP, and traveling-wave DEP applications. Point-particle approach is implemented using Lagrangian tracking method, and finite-sized particle is implemented using boundary element method. The comparison of the point-particle approach and finite-sized particle approach is presented for different DEP applications. Moreover, the effect of particle-particle interaction is explored by simulating the motion of closely packed multiple particles for the same applications, and anomalous-DEP, which is a result of particle-wall interaction at the close vicinity of electrode surface, is illustrated. en_US
dc.identifier.citationcount 19
dc.identifier.doi 10.1002/elps.201600461
dc.identifier.endpage 1418 en_US
dc.identifier.issn 0173-0835
dc.identifier.issn 1522-2683
dc.identifier.issue 11 en_US
dc.identifier.pmid 28164365
dc.identifier.scopus 2-s2.0-85013640736
dc.identifier.startpage 1407 en_US
dc.identifier.uri https://doi.org/10.1002/elps.201600461
dc.identifier.uri https://hdl.handle.net/20.500.14411/2865
dc.identifier.volume 38 en_US
dc.identifier.wos WOS:000402622400002
dc.identifier.wosquality Q2
dc.institutionauthor Baranoğlu, Besim
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 27
dc.subject Boundary element method en_US
dc.subject Dielectrophoresis en_US
dc.subject Lagrangian tracking method en_US
dc.subject Microfluidics en_US
dc.title Modeling of Dielectrophoretic Particle Motion: Point Particle Versus Finite-Sized Particle en_US
dc.type Article en_US
dc.wos.citedbyCount 21
dspace.entity.type Publication
relation.isAuthorOfPublication abb63722-f771-499a-9a57-d5042bd4123f
relation.isAuthorOfPublication.latestForDiscovery abb63722-f771-499a-9a57-d5042bd4123f
relation.isOrgUnitOfPublication 9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery 9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections