Modeling of Dielectrophoretic Particle Motion: Point Particle Versus Finite-Sized Particle

dc.contributor.author Cetin, Barbaros
dc.contributor.author Oner, S. Dogan
dc.contributor.author Baranoglu, Besim
dc.contributor.other Manufacturing Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:29:06Z
dc.date.available 2024-07-05T15:29:06Z
dc.date.issued 2017
dc.description Baranoglu, Besim/0000-0003-2005-050X; Cetin, Barbaros/0000-0001-9824-4000; Cetin, Barbaros/0000-0001-9824-4000 en_US
dc.description.abstract Dielectrophoresis (DEP) is a very popular technique for microfluidic bio-particle manipulation. For the design of a DEP-based microfluidic device, simulation of the particle trajectory within the microchannel network is crucial. There are basically two approaches: (i) point-particle approach and (ii) finite-sized particle approach. In this study, many aspects of both approaches are discussed for the simulation of direct current DEP, alternating current DEP, and traveling-wave DEP applications. Point-particle approach is implemented using Lagrangian tracking method, and finite-sized particle is implemented using boundary element method. The comparison of the point-particle approach and finite-sized particle approach is presented for different DEP applications. Moreover, the effect of particle-particle interaction is explored by simulating the motion of closely packed multiple particles for the same applications, and anomalous-DEP, which is a result of particle-wall interaction at the close vicinity of electrode surface, is illustrated. en_US
dc.identifier.doi 10.1002/elps.201600461
dc.identifier.issn 0173-0835
dc.identifier.issn 1522-2683
dc.identifier.scopus 2-s2.0-85013640736
dc.identifier.uri https://doi.org/10.1002/elps.201600461
dc.identifier.uri https://hdl.handle.net/20.500.14411/2865
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof ELECTROPHORESIS
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Boundary element method en_US
dc.subject Dielectrophoresis en_US
dc.subject Lagrangian tracking method en_US
dc.subject Microfluidics en_US
dc.title Modeling of Dielectrophoretic Particle Motion: Point Particle Versus Finite-Sized Particle en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Baranoglu, Besim/0000-0003-2005-050X
gdc.author.id Cetin, Barbaros/0000-0001-9824-4000
gdc.author.id Cetin, Barbaros/0000-0001-9824-4000
gdc.author.institutional Baranoğlu, Besim
gdc.author.scopusid 23979193400
gdc.author.scopusid 57193410188
gdc.author.scopusid 15831218000
gdc.author.wosid Baranoglu, Besim/JXX-8230-2024
gdc.author.wosid Cetin, Barbaros/T-7665-2019
gdc.author.wosid Cetin, Barbaros/J-2911-2014
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Cetin, Barbaros; Oner, S. Dogan] Bilkent Univ, Dept Mech Engn, Microfluid & Lab On A Chip Res Grp, TR-06800 Ankara, Turkey; [Baranoglu, Besim] Atilim Univ, Dept Mfg Engn, Ankara, Turkey; [Baranoglu, Besim] Atilim Univ, Computat Sci & Engn Lab, Ankara, Turkey en_US
gdc.description.endpage 1418 en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1407 en_US
gdc.description.volume 38 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2587654541
gdc.identifier.pmid 28164365
gdc.identifier.wos WOS:000402622400002
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.6525913E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Electrophoresis
gdc.oaire.keywords surface property
gdc.oaire.keywords Surface Properties
gdc.oaire.keywords Microfluidics
gdc.oaire.keywords Dielectrophoresis
gdc.oaire.keywords microfluidics
gdc.oaire.keywords direct current
gdc.oaire.keywords 530
gdc.oaire.keywords Article
gdc.oaire.keywords Motion
gdc.oaire.keywords motion
gdc.oaire.keywords computer simulation
gdc.oaire.keywords Boundary element method
gdc.oaire.keywords elementary particle
gdc.oaire.keywords microchannel
gdc.oaire.keywords traveling wave
gdc.oaire.keywords Computer Simulation
gdc.oaire.keywords procedures
gdc.oaire.keywords Particle Size
gdc.oaire.keywords Electrodes
gdc.oaire.keywords comparative study
gdc.oaire.keywords model
gdc.oaire.keywords point particle
gdc.oaire.keywords electrostimulation
gdc.oaire.keywords electrode
gdc.oaire.keywords particle size
gdc.oaire.keywords Microfluidic Analytical Techniques
gdc.oaire.keywords 620
gdc.oaire.keywords Lagrangian tracking method
gdc.oaire.keywords electrophoresis
gdc.oaire.keywords hydrodynamics
gdc.oaire.keywords finite sized particle
gdc.oaire.keywords microfluidic analysis
gdc.oaire.keywords alternating current
gdc.oaire.popularity 1.45716355E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0104 chemical sciences
gdc.oaire.sciencefields 0210 nano-technology
gdc.openalex.fwci 0.937
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 22
gdc.plumx.crossrefcites 25
gdc.plumx.mendeley 21
gdc.plumx.pubmedcites 4
gdc.plumx.scopuscites 27
gdc.scopus.citedcount 27
gdc.wos.citedcount 21
relation.isAuthorOfPublication abb63722-f771-499a-9a57-d5042bd4123f
relation.isAuthorOfPublication.latestForDiscovery abb63722-f771-499a-9a57-d5042bd4123f
relation.isOrgUnitOfPublication 9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections