Modeling of dielectrophoretic particle motion: Point particle versus finite-sized particle

dc.authoridBaranoglu, Besim/0000-0003-2005-050X
dc.authoridCetin, Barbaros/0000-0001-9824-4000
dc.authoridCetin, Barbaros/0000-0001-9824-4000
dc.authorscopusid23979193400
dc.authorscopusid57193410188
dc.authorscopusid15831218000
dc.authorwosidBaranoglu, Besim/JXX-8230-2024
dc.authorwosidCetin, Barbaros/T-7665-2019
dc.authorwosidCetin, Barbaros/J-2911-2014
dc.contributor.authorCetin, Barbaros
dc.contributor.authorOner, S. Dogan
dc.contributor.authorBaranoglu, Besim
dc.contributor.otherManufacturing Engineering
dc.date.accessioned2024-07-05T15:29:06Z
dc.date.available2024-07-05T15:29:06Z
dc.date.issued2017
dc.departmentAtılım Universityen_US
dc.department-temp[Cetin, Barbaros; Oner, S. Dogan] Bilkent Univ, Dept Mech Engn, Microfluid & Lab On A Chip Res Grp, TR-06800 Ankara, Turkey; [Baranoglu, Besim] Atilim Univ, Dept Mfg Engn, Ankara, Turkey; [Baranoglu, Besim] Atilim Univ, Computat Sci & Engn Lab, Ankara, Turkeyen_US
dc.descriptionBaranoglu, Besim/0000-0003-2005-050X; Cetin, Barbaros/0000-0001-9824-4000; Cetin, Barbaros/0000-0001-9824-4000en_US
dc.description.abstractDielectrophoresis (DEP) is a very popular technique for microfluidic bio-particle manipulation. For the design of a DEP-based microfluidic device, simulation of the particle trajectory within the microchannel network is crucial. There are basically two approaches: (i) point-particle approach and (ii) finite-sized particle approach. In this study, many aspects of both approaches are discussed for the simulation of direct current DEP, alternating current DEP, and traveling-wave DEP applications. Point-particle approach is implemented using Lagrangian tracking method, and finite-sized particle is implemented using boundary element method. The comparison of the point-particle approach and finite-sized particle approach is presented for different DEP applications. Moreover, the effect of particle-particle interaction is explored by simulating the motion of closely packed multiple particles for the same applications, and anomalous-DEP, which is a result of particle-wall interaction at the close vicinity of electrode surface, is illustrated.en_US
dc.identifier.citation19
dc.identifier.doi10.1002/elps.201600461
dc.identifier.endpage1418en_US
dc.identifier.issn0173-0835
dc.identifier.issn1522-2683
dc.identifier.issue11en_US
dc.identifier.pmid28164365
dc.identifier.scopus2-s2.0-85013640736
dc.identifier.startpage1407en_US
dc.identifier.urihttps://doi.org/10.1002/elps.201600461
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2865
dc.identifier.volume38en_US
dc.identifier.wosWOS:000402622400002
dc.identifier.wosqualityQ2
dc.institutionauthorBaranoğlu, Besim
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBoundary element methoden_US
dc.subjectDielectrophoresisen_US
dc.subjectLagrangian tracking methoden_US
dc.subjectMicrofluidicsen_US
dc.titleModeling of dielectrophoretic particle motion: Point particle versus finite-sized particleen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationabb63722-f771-499a-9a57-d5042bd4123f
relation.isAuthorOfPublication.latestForDiscoveryabb63722-f771-499a-9a57-d5042bd4123f
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections