Dielectric dispersion and energy band gap of Bi<sub>1.5-<i>x</i></sub>Sm<i><sub>x</sub></i>Zn<sub>0.92</sub>Nb<sub>1.5</sub>O<sub>6.92</sub> solid solution

dc.authoridQasrawi, Atef Fayez/0000-0001-8193-6975
dc.authorscopusid6603962677
dc.authorscopusid7003266747
dc.authorwosidQasrawi, Atef Fayez/R-4409-2019
dc.contributor.authorQasrawı, Atef Fayez Hasan
dc.contributor.authorMergen, A.
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T14:27:34Z
dc.date.available2024-07-05T14:27:34Z
dc.date.issued2014
dc.departmentAtılım Universityen_US
dc.department-temp[Qasrawi, A. F.] Arab Amer Univ, Dept Phys, Jenin, Israel; [Qasrawi, A. F.] Atilim Univ, Fac Engn, Grp Phys, TR-06836 Ankara, Turkey; [Mergen, A.] Marmara Univ, Met & Mat Engn Dept, TR-34722 Istanbul, Turkeyen_US
dc.descriptionQasrawi, Atef Fayez/0000-0001-8193-6975en_US
dc.description.abstractThe optical transmittance and reflectance spectra of samarium doped bismuth-zinc-niobium-oxide (BZN) pyrochlore ceramics are investigated in the wavelength range of 200-1050 nm (200-1500 THz). The Sm content in the Bi1.5-xSmxZn0.92Nb1.5O6.92 solid solution significantly alters the optical properties. Therefore, increasing the Sm doping ratio from x=0.10 to x=0.13 decreased the indirect forbidden energy band gap from 3.60 to 3.05 eV. In addition, above 350 THz, increasing the Sin content decreases the dielectric constant values and alters the dielectric dispersion parameters. The dielectric spectra which were evaluated in the frequency range of 200-1500 THz reflected a sharp decrease in the dielectric constant with increasing frequency clown to 358 THz. The spectra reflected a resonance peak at this frequency. Such resonance spectrum is promising for technological applications as it is close to the illumination of 870 am IR lasers that are used in optical communications. The calculated oscillator (E-o) and dispersion (E-d) energies near that critical range (375-425 THz) reflected an increase in both E-o and E-d with increasing Sm content. (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipScientific Research Council at the Ministry of Higher Education of the State of Palestine [2/1/2013]; Marmara University [FEN-A-150513-0174]en_US
dc.description.sponsorshipThe Scientific Research Council at the Ministry of Higher Education of the State of Palestine is acknowledged and thanked for their support to the Physics Laboratories at the Arab American University through the project coded 2/1/2013. We would also like to give our great thanks to Marmara University for the research fund during Project no FEN-A-150513-0174.en_US
dc.identifier.citation3
dc.identifier.doi10.1016/j.physb.2014.01.026
dc.identifier.endpage52en_US
dc.identifier.issn0921-4526
dc.identifier.issn1873-2135
dc.identifier.scopus2-s2.0-84893759623
dc.identifier.startpage48en_US
dc.identifier.urihttps://doi.org/10.1016/j.physb.2014.01.026
dc.identifier.urihttps://hdl.handle.net/20.500.14411/251
dc.identifier.volume440en_US
dc.identifier.wosWOS:000334335300007
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTransmittanceen_US
dc.subjectEnergy gapen_US
dc.subjectDielectric constanten_US
dc.subjectBZNen_US
dc.subjectTransmittanceen_US
dc.titleDielectric dispersion and energy band gap of Bi<sub>1.5-<i>x</i></sub>Sm<i><sub>x</sub></i>Zn<sub>0.92</sub>Nb<sub>1.5</sub>O<sub>6.92</sub> solid solutionen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isAuthorOfPublication.latestForDiscovery1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections