Dielectric dispersion and energy band gap of Bi<sub>1.5-<i>x</i></sub>Sm<i><sub>x</sub></i>Zn<sub>0.92</sub>Nb<sub>1.5</sub>O<sub>6.92</sub> solid solution

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The optical transmittance and reflectance spectra of samarium doped bismuth-zinc-niobium-oxide (BZN) pyrochlore ceramics are investigated in the wavelength range of 200-1050 nm (200-1500 THz). The Sm content in the Bi1.5-xSmxZn0.92Nb1.5O6.92 solid solution significantly alters the optical properties. Therefore, increasing the Sm doping ratio from x=0.10 to x=0.13 decreased the indirect forbidden energy band gap from 3.60 to 3.05 eV. In addition, above 350 THz, increasing the Sin content decreases the dielectric constant values and alters the dielectric dispersion parameters. The dielectric spectra which were evaluated in the frequency range of 200-1500 THz reflected a sharp decrease in the dielectric constant with increasing frequency clown to 358 THz. The spectra reflected a resonance peak at this frequency. Such resonance spectrum is promising for technological applications as it is close to the illumination of 870 am IR lasers that are used in optical communications. The calculated oscillator (E-o) and dispersion (E-d) energies near that critical range (375-425 THz) reflected an increase in both E-o and E-d with increasing Sm content. (C) 2014 Elsevier B.V. All rights reserved.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Transmittance, Energy gap, Dielectric constant, BZN, Transmittance

Turkish CoHE Thesis Center URL

Citation

3

WoS Q

Scopus Q

Source

Volume

440

Issue

Start Page

48

End Page

52

Collections