Exploiting Visual Features in Financial Time Series Prediction

dc.authoridErkan, Turan Erman/0000-0002-0078-711X
dc.authoridErkan, Turan Erman/0000-0002-0078-711X
dc.authorscopusid16417519900
dc.authorscopusid23974132900
dc.authorwosidErkan, Turan Erman/A-7318-2018
dc.authorwosidErkan, Turan Erman/HLP-6760-2023
dc.contributor.authorKaracor, Adil Gursel
dc.contributor.authorErkan, Turan Erman
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:38:23Z
dc.date.available2024-07-05T15:38:23Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Karacor, Adil Gursel] Atilim Univ, Modeling & Design Engn Syst, Ankara, Turkey; [Erkan, Turan Erman] Atilim Univ, Ind Engn Dept, Ankara, Turkeyen_US
dc.descriptionErkan, Turan Erman/0000-0002-0078-711X; Erkan, Turan Erman/0000-0002-0078-711Xen_US
dc.description.abstractThe possibility to enhance prediction accuracy for foreign exchange rates was investigated in two ways: first applying an outside the box approach to modeling price graphs by exploiting their visual properties, and secondly employing the most efficient methods to detect patterns to classify the direction of movement. The approach that exploits the visual properties of price graphs which make use of density regions along with high and low values describing the shape; hence, the authors propose the name 'Finance Vision.' The data used in the predictive model consists of 1-hour past price values of 4 different currency pairs, between 2003 and 2016. Prediction performances of state-of-the-art methods; Extreme Gradient Boosting, Artificial Neural Network and Support Vector Machines are compared over the same data with the same sets of features. Results show that density based visual features contribute considerably to prediction performance.en_US
dc.identifier.citation1
dc.identifier.doi10.4018/IJCINI.2020040104
dc.identifier.endpage76en_US
dc.identifier.issn1557-3958
dc.identifier.issn1557-3966
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85100707956
dc.identifier.scopusqualityQ4
dc.identifier.startpage61en_US
dc.identifier.urihttps://doi.org/10.4018/IJCINI.2020040104
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3106
dc.identifier.volume14en_US
dc.identifier.wosWOS:000518411900004
dc.institutionauthorErkan, Turan Erman
dc.language.isoenen_US
dc.publisherIgi Globalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectExtreme Gradient Boostingen_US
dc.subjectForexen_US
dc.subjectMachine Learningen_US
dc.subjectMachine Visionen_US
dc.subjectPredictabilityen_US
dc.subjectQuantitative Analysisen_US
dc.subjectSupport Vector Machineen_US
dc.titleExploiting Visual Features in Financial Time Series Predictionen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isAuthorOfPublication.latestForDiscovery232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections