Exploiting Visual Features in Financial Time Series Prediction
dc.authorid | Erkan, Turan Erman/0000-0002-0078-711X | |
dc.authorid | Erkan, Turan Erman/0000-0002-0078-711X | |
dc.authorscopusid | 16417519900 | |
dc.authorscopusid | 23974132900 | |
dc.authorwosid | Erkan, Turan Erman/A-7318-2018 | |
dc.authorwosid | Erkan, Turan Erman/HLP-6760-2023 | |
dc.contributor.author | Karacor, Adil Gursel | |
dc.contributor.author | Erkan, Turan Erman | |
dc.contributor.other | Industrial Engineering | |
dc.date.accessioned | 2024-07-05T15:38:23Z | |
dc.date.available | 2024-07-05T15:38:23Z | |
dc.date.issued | 2020 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Karacor, Adil Gursel] Atilim Univ, Modeling & Design Engn Syst, Ankara, Turkey; [Erkan, Turan Erman] Atilim Univ, Ind Engn Dept, Ankara, Turkey | en_US |
dc.description | Erkan, Turan Erman/0000-0002-0078-711X; Erkan, Turan Erman/0000-0002-0078-711X | en_US |
dc.description.abstract | The possibility to enhance prediction accuracy for foreign exchange rates was investigated in two ways: first applying an outside the box approach to modeling price graphs by exploiting their visual properties, and secondly employing the most efficient methods to detect patterns to classify the direction of movement. The approach that exploits the visual properties of price graphs which make use of density regions along with high and low values describing the shape; hence, the authors propose the name 'Finance Vision.' The data used in the predictive model consists of 1-hour past price values of 4 different currency pairs, between 2003 and 2016. Prediction performances of state-of-the-art methods; Extreme Gradient Boosting, Artificial Neural Network and Support Vector Machines are compared over the same data with the same sets of features. Results show that density based visual features contribute considerably to prediction performance. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.4018/IJCINI.2020040104 | |
dc.identifier.endpage | 76 | en_US |
dc.identifier.issn | 1557-3958 | |
dc.identifier.issn | 1557-3966 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85100707956 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 61 | en_US |
dc.identifier.uri | https://doi.org/10.4018/IJCINI.2020040104 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/3106 | |
dc.identifier.volume | 14 | en_US |
dc.identifier.wos | WOS:000518411900004 | |
dc.institutionauthor | Erkan, Turan Erman | |
dc.language.iso | en | en_US |
dc.publisher | Igi Global | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | Extreme Gradient Boosting | en_US |
dc.subject | Forex | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Machine Vision | en_US |
dc.subject | Predictability | en_US |
dc.subject | Quantitative Analysis | en_US |
dc.subject | Support Vector Machine | en_US |
dc.title | Exploiting Visual Features in Financial Time Series Prediction | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 232686ec-1b23-4304-a125-d9a30dfc2e74 | |
relation.isAuthorOfPublication.latestForDiscovery | 232686ec-1b23-4304-a125-d9a30dfc2e74 | |
relation.isOrgUnitOfPublication | 12c9377e-b7fe-4600-8326-f3613a05653d | |
relation.isOrgUnitOfPublication.latestForDiscovery | 12c9377e-b7fe-4600-8326-f3613a05653d |