Exploiting Visual Features in Financial Time Series Prediction

dc.contributor.author Karacor, Adil Gursel
dc.contributor.author Erkan, Turan Erman
dc.contributor.other Industrial Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:38:23Z
dc.date.available 2024-07-05T15:38:23Z
dc.date.issued 2020
dc.description Erkan, Turan Erman/0000-0002-0078-711X; Erkan, Turan Erman/0000-0002-0078-711X en_US
dc.description.abstract The possibility to enhance prediction accuracy for foreign exchange rates was investigated in two ways: first applying an outside the box approach to modeling price graphs by exploiting their visual properties, and secondly employing the most efficient methods to detect patterns to classify the direction of movement. The approach that exploits the visual properties of price graphs which make use of density regions along with high and low values describing the shape; hence, the authors propose the name 'Finance Vision.' The data used in the predictive model consists of 1-hour past price values of 4 different currency pairs, between 2003 and 2016. Prediction performances of state-of-the-art methods; Extreme Gradient Boosting, Artificial Neural Network and Support Vector Machines are compared over the same data with the same sets of features. Results show that density based visual features contribute considerably to prediction performance. en_US
dc.identifier.doi 10.4018/IJCINI.2020040104
dc.identifier.issn 1557-3958
dc.identifier.issn 1557-3966
dc.identifier.scopus 2-s2.0-85100707956
dc.identifier.uri https://doi.org/10.4018/IJCINI.2020040104
dc.identifier.uri https://hdl.handle.net/20.500.14411/3106
dc.language.iso en en_US
dc.publisher Igi Global en_US
dc.relation.ispartof International Journal of Cognitive Informatics and Natural Intelligence
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Neural Networks en_US
dc.subject Extreme Gradient Boosting en_US
dc.subject Forex en_US
dc.subject Machine Learning en_US
dc.subject Machine Vision en_US
dc.subject Predictability en_US
dc.subject Quantitative Analysis en_US
dc.subject Support Vector Machine en_US
dc.title Exploiting Visual Features in Financial Time Series Prediction en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Erkan, Turan Erman/0000-0002-0078-711X
gdc.author.id Erkan, Turan Erman/0000-0002-0078-711X
gdc.author.institutional Erkan, Turan Erman
gdc.author.scopusid 16417519900
gdc.author.scopusid 23974132900
gdc.author.wosid Erkan, Turan Erman/A-7318-2018
gdc.author.wosid Erkan, Turan Erman/HLP-6760-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Karacor, Adil Gursel] Atilim Univ, Modeling & Design Engn Syst, Ankara, Turkey; [Erkan, Turan Erman] Atilim Univ, Ind Engn Dept, Ankara, Turkey en_US
gdc.description.endpage 76 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 61 en_US
gdc.description.volume 14 en_US
gdc.identifier.openalex W3008111886
gdc.identifier.wos WOS:000518411900004
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.8445404E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.092051E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.571
gdc.openalex.normalizedpercentile 0.73
gdc.opencitations.count 3
gdc.plumx.mendeley 17
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.wos.citedcount 2
relation.isAuthorOfPublication 232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isAuthorOfPublication.latestForDiscovery 232686ec-1b23-4304-a125-d9a30dfc2e74
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections