Boric acid versus boron trioxide as catalysts for green energy source H2 production from sodium borohydride methanolysis

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Abstract

Here, boric acid (H3BO3) and its dewatered form, boron trioxide (B2O3) were tested as catalysts for hydrogen (H2) evolution in the methanolysis of sodium borohydride (NaBH4) in methanol. Parameters such as catalyst types and their amounts, NaBH4 concentration, and the reaction temperature affecting the hydrogen generation rate (HGR) were studied. It has been found that H3BO3 and B2O3 catalyzed methanolysis reaction of NaBH4 follow up first-order kinetics relative to the concentration of NaBH4. Furthermore, the conversion and activity of these catalysts were examined to determine their performance in ten consecutive use. Interestingly, H3BO3 and B2O3 have demonstrated superior catalytic performances in methanolysis of NaBH4 comparing to the studies published in literature with the activation energy of respectively 22.08 kJ.mol-1, and 23.30 kJ.mol-1 in H2 production. The HGR was calculated as 6481 mL.min-1.g-1 and 5163 mL.min-1.g-1 for H3BO3 and B2O3 catalyst, respectively for 50 mg catalyst at 298 K. These results are comparably better than most metal nanoparticle catalysts used for H2 production in addition to the naturally occurring boron-based environmentally friendliness of these materials.

Description

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

N/A

Scopus Q

N/A

Source

Manas Journal of Engineering

Volume

9

Issue

2

Start Page

142

End Page

152

Collections