Doğrusal olmayan Black-Scholes denklemi için üstel sonlu fark yöntemi

Loading...
Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

Bu tezde, likit olmayan bir piyasada ortaya çıkan doğrusal olmayan Black-Scholes denklemi için üstel sonlu fark yöntemi çalışılmıştır. 1. Bölüm opsiyon fiyatlandırması problemi terminolojisi, temel tanımlar ve literatür taramasına ayrılmıştır. 2. Bölümde Black-Scholes modeli ve Black-Scholes denklemi için sonlu fark yöntemleri gözden geçirilmiştir. 3. Bölümde doğrusal olmayan Black-Scholes denklemi için açık sonlu fark yöntemi, monotonluk, kararlılık ve tutarlılık sonuçları ile birlikte çalışılmıştır. 4. Bölümde doğrusal ve doğrusal olmayan Black-Scholes denklemleri için üstel sonlu fark yöntemi uygulanmıştır. Ayrıca, yöntemin tutarlılığı ve yakınsaklığı araştırılmıştır. Teorik sonuçları doğrulamak için sayısal örnekler verilmiştir. Sayısal sonuçlar, üstel sonlu fark yönteminin açık sonlu fark yönteminden daha iyi performans sergilediğini göstermiştir. 5. Bölüm sonuç kısmına ayrılmıştır.
In this thesis, we investigate exponential finite difference method for nonlinear Black-Scholes equation arising in an illiquid market. Chapter 1 is devoted to the literature survey with some basic definitions and terminology of the option pricing problem. In Chapter 2 we review the Black-Scholes model and finite difference methods for Black-Scholes equation. In Chapter 3, an explicit finite difference method for a nonlinear Black-Scholes equation is studied with the monotonicity, stability and consistency results. In Chapter 4, we apply the exponential finite difference method to linear and nonlinear Black-Scholes equations. Moreover, we investigate consistency and convergence of the method. Numerical experiments are performed to verify theoretical results. Exponential finite difference method is compared with an explicit finite difference method proposed for linear and nonlinear Black-Scholes equation. Numerical results show that exponential finite difference method exhibits better performance then explicit method. Finally, we give a brief conclusion in Chapter 5.

Description

Keywords

Matematik, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

88