Estimation of Polypropylene Concentration of Modified Bitumen Images by Using K-Nn and Svm Classifiers

dc.authorid Tapkin, Serkan/0000-0003-1417-9972
dc.authorid Ozcelik, Erol/0000-0003-0370-8517
dc.authorid Sengoz, Burak/0000-0003-0684-4880
dc.authorid Sengul, Gokhan/0000-0003-2273-4411
dc.authorwosid Tapkin, Serkan/AHE-7051-2022
dc.authorwosid Sengul, Gokhan/G-8213-2016
dc.authorwosid Ozcelik, Erol/AAD-4252-2019
dc.authorwosid Topal, Ali/F-6891-2013
dc.authorwosid Sengoz, Burak/AAR-7612-2020
dc.contributor.author Tapkin, Serkan
dc.contributor.author Sengoz, Burak
dc.contributor.author Sengul, Gokhan
dc.contributor.author Topal, Ali
dc.contributor.author Ozcelik, Erol
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T14:33:01Z
dc.date.available 2024-07-05T14:33:01Z
dc.date.issued 2015
dc.department Atılım University en_US
dc.department-temp [Tapkin, Serkan] Bahcesehir Univ, Transportat Engn Dept, TR-34353 Istanbul, Turkey; [Sengoz, Burak; Topal, Ali] Dokuz Eylul Univ, Dept Civil Engn, TR-35160 Izmir, Turkey; [Sengul, Gokhan; Ozcelik, Erol] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey en_US
dc.description Tapkin, Serkan/0000-0003-1417-9972; Ozcelik, Erol/0000-0003-0370-8517; Sengoz, Burak/0000-0003-0684-4880; Sengul, Gokhan/0000-0003-2273-4411 en_US
dc.description.abstract The goal of this study is to design an expert system that automatically classifies the microscopic images of polypropylene fiber (PPF) modified bitumen including seven different contents of fibers. Optical microscopy was used to capture the images from thin films of polypropylene fiber modified bitumen samples at a magnification scale of 100 x. A total of 313 images were pre-processed, and features were extracted and selected by the exhaustive search method. The k-nearest neighbor (k-NN) and multiclass support vector machine (SVM) classifiers were applied to quantify the representation capacity. The k-NN and multiclass SVM classifiers reached an accuracy rate of 87% and 86%, respectively. The results suggest that the proposed expert system can successfully estimate the concentration of PPF in bitumen images with good generalization characteristics. (C) 2014 American Society of Civil Engineers. en_US
dc.identifier.citationcount 6
dc.identifier.doi 10.1061/(ASCE)CP.1943-5487.0000353
dc.identifier.issn 0887-3801
dc.identifier.issn 1943-5487
dc.identifier.issue 5 en_US
dc.identifier.uri https://doi.org/10.1061/(ASCE)CP.1943-5487.0000353
dc.identifier.uri https://hdl.handle.net/20.500.14411/852
dc.identifier.volume 29 en_US
dc.identifier.wos WOS:000359941100002
dc.identifier.wosquality Q1
dc.institutionauthor Şengül, Gökhan
dc.institutionauthor Özçelik, Erol
dc.language.iso en en_US
dc.publisher Asce-amer Soc Civil Engineers en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Polypropylene fibers en_US
dc.subject Optical microscopy en_US
dc.subject Morphology en_US
dc.subject Exhaustive search method en_US
dc.subject K-nearest neighbor en_US
dc.subject Multiclass support vector machine en_US
dc.subject Concentration estimation en_US
dc.title Estimation of Polypropylene Concentration of Modified Bitumen Images by Using K-Nn and Svm Classifiers en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication acfd2e4e-2792-4323-91eb-806134586df2
relation.isAuthorOfPublication.latestForDiscovery f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections