Estimation of Polypropylene Concentration of Modified Bitumen Images by Using k-NN and SVM Classifiers

dc.authoridTapkin, Serkan/0000-0003-1417-9972
dc.authoridOzcelik, Erol/0000-0003-0370-8517
dc.authoridSengoz, Burak/0000-0003-0684-4880
dc.authoridSengul, Gokhan/0000-0003-2273-4411
dc.authorwosidTapkin, Serkan/AHE-7051-2022
dc.authorwosidSengul, Gokhan/G-8213-2016
dc.authorwosidOzcelik, Erol/AAD-4252-2019
dc.authorwosidTopal, Ali/F-6891-2013
dc.authorwosidSengoz, Burak/AAR-7612-2020
dc.contributor.authorTapkin, Serkan
dc.contributor.authorSengoz, Burak
dc.contributor.authorSengul, Gokhan
dc.contributor.authorTopal, Ali
dc.contributor.authorOzcelik, Erol
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T14:33:01Z
dc.date.available2024-07-05T14:33:01Z
dc.date.issued2015
dc.departmentAtılım Universityen_US
dc.department-temp[Tapkin, Serkan] Bahcesehir Univ, Transportat Engn Dept, TR-34353 Istanbul, Turkey; [Sengoz, Burak; Topal, Ali] Dokuz Eylul Univ, Dept Civil Engn, TR-35160 Izmir, Turkey; [Sengul, Gokhan; Ozcelik, Erol] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkeyen_US
dc.descriptionTapkin, Serkan/0000-0003-1417-9972; Ozcelik, Erol/0000-0003-0370-8517; Sengoz, Burak/0000-0003-0684-4880; Sengul, Gokhan/0000-0003-2273-4411en_US
dc.description.abstractThe goal of this study is to design an expert system that automatically classifies the microscopic images of polypropylene fiber (PPF) modified bitumen including seven different contents of fibers. Optical microscopy was used to capture the images from thin films of polypropylene fiber modified bitumen samples at a magnification scale of 100 x. A total of 313 images were pre-processed, and features were extracted and selected by the exhaustive search method. The k-nearest neighbor (k-NN) and multiclass support vector machine (SVM) classifiers were applied to quantify the representation capacity. The k-NN and multiclass SVM classifiers reached an accuracy rate of 87% and 86%, respectively. The results suggest that the proposed expert system can successfully estimate the concentration of PPF in bitumen images with good generalization characteristics. (C) 2014 American Society of Civil Engineers.en_US
dc.identifier.citation6
dc.identifier.doi10.1061/(ASCE)CP.1943-5487.0000353
dc.identifier.issn0887-3801
dc.identifier.issn1943-5487
dc.identifier.issue5en_US
dc.identifier.urihttps://doi.org/10.1061/(ASCE)CP.1943-5487.0000353
dc.identifier.urihttps://hdl.handle.net/20.500.14411/852
dc.identifier.volume29en_US
dc.identifier.wosWOS:000359941100002
dc.identifier.wosqualityQ1
dc.institutionauthorŞengül, Gökhan
dc.institutionauthorÖzçelik, Erol
dc.language.isoenen_US
dc.publisherAsce-amer Soc Civil Engineersen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPolypropylene fibersen_US
dc.subjectOptical microscopyen_US
dc.subjectMorphologyen_US
dc.subjectExhaustive search methoden_US
dc.subjectK-nearest neighboren_US
dc.subjectMulticlass support vector machineen_US
dc.subjectConcentration estimationen_US
dc.titleEstimation of Polypropylene Concentration of Modified Bitumen Images by Using k-NN and SVM Classifiersen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublicationacfd2e4e-2792-4323-91eb-806134586df2
relation.isAuthorOfPublication.latestForDiscoveryf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections