Deep Learning-Based Defect Prediction for Mobile Applications
| dc.contributor.author | Jorayeva, Manzura | |
| dc.contributor.author | Akbulut, Akhan | |
| dc.contributor.author | Catal, Cagatay | |
| dc.contributor.author | Mishra, Alok | |
| dc.date.accessioned | 2024-07-05T15:17:45Z | |
| dc.date.available | 2024-07-05T15:17:45Z | |
| dc.date.issued | 2022 | |
| dc.description | Mishra, Alok/0000-0003-1275-2050; Catal, Cagatay/0000-0003-0959-2930 | en_US |
| dc.description.abstract | Smartphones have enabled the widespread use of mobile applications. However, there are unrecognized defects of mobile applications that can affect businesses due to a negative user experience. To avoid this, the defects of applications should be detected and removed before release. This study aims to develop a defect prediction model for mobile applications. We performed cross-project and within-project experiments and also used deep learning algorithms, such as convolutional neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model for Android-based applications. Based on our within-project experimental results, the CNN-based model provides the best performance for mobile application defect prediction with a 0.933 average area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is still room for improvement when deep learning algorithms are preferred. | en_US |
| dc.description.sponsorship | Molde University College-Specialized Univ. in Logistics, Norway | en_US |
| dc.description.sponsorship | This research was funded by Molde University College-Specialized Univ. in Logistics, Norway for the support of Open Access fund. | en_US |
| dc.identifier.doi | 10.3390/s22134734 | |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.uri | https://doi.org/10.3390/s22134734 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1786 | |
| dc.language.iso | en | en_US |
| dc.publisher | Mdpi | en_US |
| dc.relation.ispartof | Sensors | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | software defect prediction | en_US |
| dc.subject | software fault prediction | en_US |
| dc.subject | mobile application | en_US |
| dc.subject | Android applications | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | machine learning | en_US |
| dc.title | Deep Learning-Based Defect Prediction for Mobile Applications | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Mishra, Alok/0000-0003-1275-2050 | |
| gdc.author.id | Catal, Cagatay/0000-0003-0959-2930 | |
| gdc.author.wosid | Mishra, Alok/AAE-2673-2019 | |
| gdc.author.wosid | Catal, Cagatay/AAF-3929-2019 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | true | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Jorayeva, Manzura; Akbulut, Akhan] Istanbul Kultur Univ, Dept Comp Engn, TR-34158 Istanbul, Turkey; [Jorayeva, Manzura] Yazara Payment Solut Inc, 230 Pk Ave,4th Floor, New York, NY 10169 USA; [Catal, Cagatay] Qatar Univ, Dept Comp Sci & Engn, Doha 2713, Qatar; [Mishra, Alok] Molde Univ, Coll Specialized Univ Logist, Fac Logist, N-6410 Molde, Norway; [Mishra, Alok] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey | en_US |
| gdc.description.issue | 13 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 4734 | |
| gdc.description.volume | 22 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4283394823 | |
| gdc.identifier.pmid | 35808230 | |
| gdc.identifier.wos | WOS:000823471600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 12.0 | |
| gdc.oaire.influence | 3.1492127E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | software defect prediction; software fault prediction; mobile application; Android applications; deep learning; machine learning | |
| gdc.oaire.keywords | Chemical technology | |
| gdc.oaire.keywords | Mobile Application | |
| gdc.oaire.keywords | Software Defect Prediction | |
| gdc.oaire.keywords | deep learning | |
| gdc.oaire.keywords | 006 | |
| gdc.oaire.keywords | Android Applications | |
| gdc.oaire.keywords | TP1-1185 | |
| gdc.oaire.keywords | mobile application | |
| gdc.oaire.keywords | Software Fault Prediction | |
| gdc.oaire.keywords | Mobile Applications | |
| gdc.oaire.keywords | Article | |
| gdc.oaire.keywords | Machine Learning | |
| gdc.oaire.keywords | Android applications; deep learning; machine learning; mobile application; software defect prediction; software fault prediction | |
| gdc.oaire.keywords | software defect prediction | |
| gdc.oaire.keywords | machine learning | |
| gdc.oaire.keywords | Deep Learning | |
| gdc.oaire.keywords | Android applications | |
| gdc.oaire.keywords | Area Under Curve | |
| gdc.oaire.keywords | software fault prediction | |
| gdc.oaire.keywords | Neural Networks, Computer | |
| gdc.oaire.keywords | Algorithms | |
| gdc.oaire.popularity | 1.0922164E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 1.72234752 | |
| gdc.openalex.normalizedpercentile | 0.81 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.crossrefcites | 9 | |
| gdc.plumx.mendeley | 50 | |
| gdc.plumx.scopuscites | 9 | |
| gdc.virtual.author | Mıshra, Alok | |
| gdc.wos.citedcount | 6 | |
| relation.isAuthorOfPublication | de97bc0b-032d-4567-835e-6cd0cb17b98b | |
| relation.isAuthorOfPublication.latestForDiscovery | de97bc0b-032d-4567-835e-6cd0cb17b98b | |
| relation.isOrgUnitOfPublication | d86bbe4b-0f69-4303-a6de-c7ec0c515da5 | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | d86bbe4b-0f69-4303-a6de-c7ec0c515da5 |
