Deep Learning-Based Defect Prediction for Mobile Applications

dc.contributor.author Jorayeva, Manzura
dc.contributor.author Akbulut, Akhan
dc.contributor.author Catal, Cagatay
dc.contributor.author Mishra, Alok
dc.contributor.other Software Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:17:45Z
dc.date.available 2024-07-05T15:17:45Z
dc.date.issued 2022
dc.description Mishra, Alok/0000-0003-1275-2050; Catal, Cagatay/0000-0003-0959-2930 en_US
dc.description.abstract Smartphones have enabled the widespread use of mobile applications. However, there are unrecognized defects of mobile applications that can affect businesses due to a negative user experience. To avoid this, the defects of applications should be detected and removed before release. This study aims to develop a defect prediction model for mobile applications. We performed cross-project and within-project experiments and also used deep learning algorithms, such as convolutional neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model for Android-based applications. Based on our within-project experimental results, the CNN-based model provides the best performance for mobile application defect prediction with a 0.933 average area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is still room for improvement when deep learning algorithms are preferred. en_US
dc.description.sponsorship Molde University College-Specialized Univ. in Logistics, Norway en_US
dc.description.sponsorship This research was funded by Molde University College-Specialized Univ. in Logistics, Norway for the support of Open Access fund. en_US
dc.identifier.doi 10.3390/s22134734
dc.identifier.issn 1424-8220
dc.identifier.uri https://doi.org/10.3390/s22134734
dc.identifier.uri https://hdl.handle.net/20.500.14411/1786
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject software defect prediction en_US
dc.subject software fault prediction en_US
dc.subject mobile application en_US
dc.subject Android applications en_US
dc.subject deep learning en_US
dc.subject machine learning en_US
dc.title Deep Learning-Based Defect Prediction for Mobile Applications en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Mishra, Alok/0000-0003-1275-2050
gdc.author.id Catal, Cagatay/0000-0003-0959-2930
gdc.author.institutional Mıshra, Alok
gdc.author.wosid Mishra, Alok/AAE-2673-2019
gdc.author.wosid Catal, Cagatay/AAF-3929-2019
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Jorayeva, Manzura; Akbulut, Akhan] Istanbul Kultur Univ, Dept Comp Engn, TR-34158 Istanbul, Turkey; [Jorayeva, Manzura] Yazara Payment Solut Inc, 230 Pk Ave,4th Floor, New York, NY 10169 USA; [Catal, Cagatay] Qatar Univ, Dept Comp Sci & Engn, Doha 2713, Qatar; [Mishra, Alok] Molde Univ, Coll Specialized Univ Logist, Fac Logist, N-6410 Molde, Norway; [Mishra, Alok] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey en_US
gdc.description.issue 13 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 22 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4283394823
gdc.identifier.pmid 35808230
gdc.identifier.wos WOS:000823471600001
gdc.openalex.fwci 1.179
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 8
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 50
gdc.plumx.scopuscites 9
gdc.wos.citedcount 6
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections