Reliability Assessment for Censored Δ-Shock Models

dc.authorscopusid 6602310120
dc.authorscopusid 8203625300
dc.contributor.author Chadjiconstantinidis, Stathis
dc.contributor.author Eryilmaz, Serkan
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:24:26Z
dc.date.available 2024-07-05T15:24:26Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Chadjiconstantinidis, Stathis] Univ Piraeus, Dept Stat & Insurance Sci, 80 Karaoli & Demetriou Str, Piraeus 18534, Greece; [Eryilmaz, Serkan] Atilim Univ, Dept Ind Engn, Ankara, Turkey en_US
dc.description.abstract This paper is devoted to study censored delta-shock models for both cases when the intershock times have discrete and continuous distributions. In particular, the distribution and moments of the system's lifetime are studied via probability generating functions and Laplace transforms. For discrete intershock time distributions, several recursions for evaluating the probability mass function, the survival function and the moments of the system's lifetime are given. As it is shown for the discrete case, the distribution of the system's lifetime is directly linked with matrix-geometric distributions for particular classes of intershock time distributions, such as phase-type distributions. Thus, matrix-based expressions are readily obtained for the exact distribution of the system's lifetime under discrete setup. Also, discrete uniform intershock time distributions are examined. For the case of continuous intershock time distributions, it is shown that the shifted lifetime has a compound geometric distribution, and based on this, the distribution of the system's lifetime is approximated via discrete mixture distributions having a mass at delta and matrix-exponential distributions for the continuous part. Both for the discrete and the continuous case, Lundberg-type bounds and asymptotics for the survival function of system's lifetime are given. To illustrate the results, some numerical examples, both for the discrete and the continuous case, are also given. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1007/s11009-022-09972-z
dc.identifier.endpage 3173 en_US
dc.identifier.issn 1387-5841
dc.identifier.issn 1573-7713
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-85135913639
dc.identifier.scopusquality Q3
dc.identifier.startpage 3141 en_US
dc.identifier.uri https://doi.org/10.1007/s11009-022-09972-z
dc.identifier.uri https://hdl.handle.net/20.500.14411/2432
dc.identifier.volume 24 en_US
dc.identifier.wos WOS:000840634300001
dc.identifier.wosquality Q4
dc.institutionauthor Eryılmaz, Serkan
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 5
dc.subject Matrix-geometric distribution en_US
dc.subject Matrix-exponential distribution en_US
dc.subject Phase-type distribution en_US
dc.subject Compound geometric distribution en_US
dc.subject Reliability en_US
dc.subject Shock model en_US
dc.title Reliability Assessment for Censored Δ-Shock Models en_US
dc.type Article en_US
dc.wos.citedbyCount 5
dspace.entity.type Publication
relation.isAuthorOfPublication 37862217-5541-47e3-9406-e21aa38e7fdf
relation.isAuthorOfPublication.latestForDiscovery 37862217-5541-47e3-9406-e21aa38e7fdf
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections