A new approach to adaptive spline threshold autoregression by using Tikhonov regularization and continuous optimization

dc.contributor.author Yalaz, S.
dc.contributor.author Taylan, P.
dc.contributor.author Ozkurt, F. Yerlikaya
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:28:23Z
dc.date.available 2024-07-05T15:28:23Z
dc.date.issued 2019
dc.department Atılım University en_US
dc.department-temp [Yalaz, S.] Dicle Univ, Dept Stat, Fac Sci, TR-21280 Diyarbakir, Turkey; [Taylan, P.] Dicle Univ, Dept Math, Fac Sci, TR-21280 Diyarbakir, Turkey; [Ozkurt, F. Yerlikaya] Atilim Univ, Dept Ind Engn, Fac Engn, TR-06830 Ankara, Turkey en_US
dc.description.abstract In this study adaptive spline threshold autoregression and conic quadratic programming is used to develope conic adaptive spline threshold autoregression. With the introduced approach the second stepwise algorithm of adaptive spline threshold autoregression model turned to the Tikhonov regularization problem which was transformed into conic quadratic programming problem. The aim is to attain an optimum solution chosen in many solutions obtained by determining the bounds of the optimization problem using multiobjective optimization approach. Furthermore, in application part we used two different data set to compare performances of linear regression, adaptive spline threshold autoregression and conic adaptive spline threshold autoregression approaches. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1080/09720510.2019.1606320
dc.identifier.endpage 1142 en_US
dc.identifier.issn 0972-0510
dc.identifier.issn 2169-0014
dc.identifier.issue 6 en_US
dc.identifier.startpage 1127 en_US
dc.identifier.uri https://doi.org/10.1080/09720510.2019.1606320
dc.identifier.uri https://hdl.handle.net/20.500.14411/2791
dc.identifier.volume 22 en_US
dc.identifier.wos WOS:000747344700001
dc.institutionauthor Yerlikaya Özkurt, Fatma
dc.language.iso en en_US
dc.publisher Taru Publications en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Time series en_US
dc.subject Multivariate adaptive regression splines (MARS) en_US
dc.subject Adaptive splines threshold autoregression (ASTAR) en_US
dc.subject Tikhonov regularization en_US
dc.subject Multiobjective optimization en_US
dc.subject Conic quadratic programming (CQP) en_US
dc.title A new approach to adaptive spline threshold autoregression by using Tikhonov regularization and continuous optimization en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections