A Generalized Lmi-Based Approach To the Global Asymptotic Stability of Delayed Cellular Neural Networks

dc.contributor.author Singh, V
dc.contributor.other Department of Mechatronics Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:08:36Z
dc.date.available 2024-07-05T15:08:36Z
dc.date.issued 2004
dc.description.abstract A novel linear matrix inequality (LMI)-based criterion for the global asymptotic stability and uniqueness of the equilibrium point of a class of delayed cellular neural networks (CNNs) is presented. The criterion turns out to be a generalization and improvement over some previous criteria. en_US
dc.identifier.doi 10.1109/TNN.2003.820616
dc.identifier.issn 1045-9227
dc.identifier.scopus 2-s2.0-1242331018
dc.identifier.uri https://doi.org/10.1109/TNN.2003.820616
dc.identifier.uri https://hdl.handle.net/20.500.14411/1062
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.ispartof IEEE Transactions on Neural Networks
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject delayed cellular neural networks (DCNNs) en_US
dc.subject equilibrium analysis en_US
dc.subject global stability en_US
dc.title A Generalized Lmi-Based Approach To the Global Asymptotic Stability of Delayed Cellular Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Sıngh, Vımal
gdc.author.scopusid 7404651584
gdc.bip.impulseclass C3
gdc.bip.influenceclass C3
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 225 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 223 en_US
gdc.description.volume 15 en_US
gdc.identifier.openalex W2111906242
gdc.identifier.pmid 15387264
gdc.identifier.wos WOS:000188603900022
gdc.oaire.diamondjournal false
gdc.oaire.impulse 67.0
gdc.oaire.influence 2.7774863E-8
gdc.oaire.isgreen false
gdc.oaire.keywords Linear Models
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.popularity 8.818342E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 23.612
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 191
gdc.plumx.crossrefcites 191
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 211
gdc.scopus.citedcount 211
gdc.wos.citedcount 193
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscovery e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections