Fitting a recurrent dynamical neural network to neural spiking data: tackling the sigmoidal gain function issues

dc.authoridDoruk, Ozgur/0000-0002-9217-0845
dc.authorscopusid8503734100
dc.authorwosidDoruk, Ozgur/T-9951-2018
dc.contributor.authorDoruk, Reşat Özgür
dc.contributor.otherElectrical-Electronics Engineering
dc.date.accessioned2024-07-05T15:28:41Z
dc.date.available2024-07-05T15:28:41Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-tempATILIM ÜNİVERSİTESİen_US
dc.descriptionDoruk, Ozgur/0000-0002-9217-0845en_US
dc.description.abstractThis is a continuation of a recent study (Doruk RO, Zhang K. Fitting of dynamic recurrent neural networkmodels to sensory stimulus-response data. J Biol Phys 2018; 44: 449-469), where a continuous time dynamical recurrentneural network is fitted to neural spiking data. In this research, we address the issues arising from the inclusion ofsigmoidal gain function parameters to the estimation algorithm. The neural spiking data will be obtained from the samemodel as that of Doruk and Zhang, but we propose a different model for identification. This will also be a continuoustime recurrent neural network, but with generic sigmoidal gains. The simulation framework and estimation algorithmsare kept similar to that of Doruk and Zhang so that we can have a solid base to compare the results. We evaluatethe estimation performance in two different ways. First, we compare the firing rate responses of the original and theestimated model. We find that responses of both models to the same stimuli are similar. Secondly, we evaluate variationsof the standard deviations of the estimates against a number of samples and stimulus parameters. They show a similarpattern to that of Doruk and Zhang. We thus conclude that our model serves as a reasonable alternative provided thatfiring rate is the response of interest (to any stimulus).en_US
dc.identifier.citation0
dc.identifier.doi10.3906/elk-1808-29
dc.identifier.endpage920en_US
dc.identifier.issn1300-0632
dc.identifier.issn1300-0632
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85065831717
dc.identifier.scopusqualityQ3
dc.identifier.startpage903en_US
dc.identifier.trdizinid336529
dc.identifier.urihttps://doi.org/10.3906/elk-1808-29
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/336529/fitting-a-recurrent-dynamical-neural-network-to-neural-spiking-data-tackling-the-sigmoidal-gain-function-issues
dc.identifier.volume27en_US
dc.identifier.wosWOS:000463355800017
dc.identifier.wosqualityQ4
dc.institutionauthorDoruk, Reşat Özgür
dc.language.isoenen_US
dc.publisherTubitak Scientific & Technological Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMühendisliken_US
dc.subjectElektrik ve Elektroniken_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectYazılım Mühendisliğien_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectSibernitiken_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectBilgi Sistemlerien_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectDonanım ve Mimarien_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectTeori ve Metotlaren_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectYapay Zekaen_US
dc.titleFitting a recurrent dynamical neural network to neural spiking data: tackling the sigmoidal gain function issuesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationbbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isAuthorOfPublication.latestForDiscoverybbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files