Reconstruction of 3d Object Shape Using Hybrid Modular Neural Network Architecture Trained on 3d Models From Shapenetcore Dataset

dc.authorid Maskeliunas, Rytis/0000-0002-2809-2213
dc.authorid Misra, Sanjay/0000-0002-3556-9331
dc.authorid Damaševičius, Robertas/0000-0001-9990-1084
dc.authorscopusid 57203226589
dc.authorscopusid 27467587600
dc.authorscopusid 6603451290
dc.authorscopusid 56962766700
dc.authorwosid Maskeliunas, Rytis/J-7173-2017
dc.authorwosid Misra, Sanjay/K-2203-2014
dc.authorwosid Damaševičius, Robertas/E-1387-2017
dc.contributor.author Kulikajevas, Audrius
dc.contributor.author Maskeliunas, Rytis
dc.contributor.author Damasevicius, Robertas
dc.contributor.author Misra, Sanjay
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:40:47Z
dc.date.available 2024-07-05T15:40:47Z
dc.date.issued 2019
dc.department Atılım University en_US
dc.department-temp [Kulikajevas, Audrius] Kaunas Univ Technol, Dept Multimedia Engn, LT-51368 Kaunas, Lithuania; [Maskeliunas, Rytis] Kaunas Univ Technol, Ctr Real Time Comp Syst, LT-51368 Kaunas, Lithuania; [Damasevicius, Robertas] Kaunas Univ Technol, Dept Software Engn, LT-51368 Kaunas, Lithuania; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota 1023, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06830 Ankara, Turkey en_US
dc.description Maskeliunas, Rytis/0000-0002-2809-2213; Misra, Sanjay/0000-0002-3556-9331; Damaševičius, Robertas/0000-0001-9990-1084 en_US
dc.description.abstract Depth-based reconstruction of three-dimensional (3D) shape of objects is one of core problems in computer vision with a lot of commercial applications. However, the 3D scanning for point cloud-based video streaming is expensive and is generally unattainable to an average user due to required setup of multiple depth sensors. We propose a novel hybrid modular artificial neural network (ANN) architecture, which can reconstruct smooth polygonal meshes from a single depth frame, using a priori knowledge. The architecture of neural network consists of separate nodes for recognition of object type and reconstruction thus allowing for easy retraining and extension for new object types. We performed recognition of nine real-world objects using the neural network trained on the ShapeNetCore model dataset. The results evaluated quantitatively using the Intersection-over-Union (IoU), Completeness, Correctness and Quality metrics, and qualitative evaluation by visual inspection demonstrate the robustness of the proposed architecture with respect to different viewing angles and illumination conditions. en_US
dc.identifier.citationcount 21
dc.identifier.doi 10.3390/s19071553
dc.identifier.issn 1424-8220
dc.identifier.issue 7 en_US
dc.identifier.pmid 30935104
dc.identifier.scopus 2-s2.0-85064204126
dc.identifier.uri https://doi.org/10.3390/s19071553
dc.identifier.uri https://hdl.handle.net/20.500.14411/3357
dc.identifier.volume 19 en_US
dc.identifier.wos WOS:000465570700072
dc.identifier.wosquality Q2
dc.institutionauthor Mısra, Sanjay
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 25
dc.subject 3D depth shape recognition en_US
dc.subject 3D depth scanning en_US
dc.subject RGB-D sensors en_US
dc.subject hybrid neural networks en_US
dc.title Reconstruction of 3d Object Shape Using Hybrid Modular Neural Network Architecture Trained on 3d Models From Shapenetcore Dataset en_US
dc.type Article en_US
dc.wos.citedbyCount 24
dspace.entity.type Publication
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections