Reconstruction of 3D Object Shape Using Hybrid Modular Neural Network Architecture Trained on 3D Models from ShapeNetCore Dataset

dc.authoridMaskeliunas, Rytis/0000-0002-2809-2213
dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authoridDamaševičius, Robertas/0000-0001-9990-1084
dc.authorscopusid57203226589
dc.authorscopusid27467587600
dc.authorscopusid6603451290
dc.authorscopusid56962766700
dc.authorwosidMaskeliunas, Rytis/J-7173-2017
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.authorwosidDamaševičius, Robertas/E-1387-2017
dc.contributor.authorKulikajevas, Audrius
dc.contributor.authorMaskeliunas, Rytis
dc.contributor.authorDamasevicius, Robertas
dc.contributor.authorMisra, Sanjay
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:40:47Z
dc.date.available2024-07-05T15:40:47Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-temp[Kulikajevas, Audrius] Kaunas Univ Technol, Dept Multimedia Engn, LT-51368 Kaunas, Lithuania; [Maskeliunas, Rytis] Kaunas Univ Technol, Ctr Real Time Comp Syst, LT-51368 Kaunas, Lithuania; [Damasevicius, Robertas] Kaunas Univ Technol, Dept Software Engn, LT-51368 Kaunas, Lithuania; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota 1023, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06830 Ankara, Turkeyen_US
dc.descriptionMaskeliunas, Rytis/0000-0002-2809-2213; Misra, Sanjay/0000-0002-3556-9331; Damaševičius, Robertas/0000-0001-9990-1084en_US
dc.description.abstractDepth-based reconstruction of three-dimensional (3D) shape of objects is one of core problems in computer vision with a lot of commercial applications. However, the 3D scanning for point cloud-based video streaming is expensive and is generally unattainable to an average user due to required setup of multiple depth sensors. We propose a novel hybrid modular artificial neural network (ANN) architecture, which can reconstruct smooth polygonal meshes from a single depth frame, using a priori knowledge. The architecture of neural network consists of separate nodes for recognition of object type and reconstruction thus allowing for easy retraining and extension for new object types. We performed recognition of nine real-world objects using the neural network trained on the ShapeNetCore model dataset. The results evaluated quantitatively using the Intersection-over-Union (IoU), Completeness, Correctness and Quality metrics, and qualitative evaluation by visual inspection demonstrate the robustness of the proposed architecture with respect to different viewing angles and illumination conditions.en_US
dc.identifier.citation21
dc.identifier.doi10.3390/s19071553
dc.identifier.issn1424-8220
dc.identifier.issue7en_US
dc.identifier.pmid30935104
dc.identifier.scopus2-s2.0-85064204126
dc.identifier.urihttps://doi.org/10.3390/s19071553
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3357
dc.identifier.volume19en_US
dc.identifier.wosWOS:000465570700072
dc.identifier.wosqualityQ2
dc.institutionauthorMısra, Sanjay
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject3D depth shape recognitionen_US
dc.subject3D depth scanningen_US
dc.subjectRGB-D sensorsen_US
dc.subjecthybrid neural networksen_US
dc.titleReconstruction of 3D Object Shape Using Hybrid Modular Neural Network Architecture Trained on 3D Models from ShapeNetCore Dataseten_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections