Kaya, Murat

Loading...
Profile Picture
Name Variants
Kaya,Murat
Murat, Kaya
M., Kaya
Kaya M.
Kaya, Murat
K.,Murat
K., Murat
M.,Kaya
Kaya,M.
Murat Kaya
Job Title
Profesör Doktor
Email Address
muratkaya@atilim.edu.tr
Main Affiliation
Chemical Engineering
Chemical Engineering
Status
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

3

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

9

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

24

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

4

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

1

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

3

Research Products
Scholarly Output

55

Articles

37

Citation Count

1742

Supervised Theses

16

Scholarly Output Search Results

Now showing 1 - 10 of 14
  • Article
    Citation - WoS: 19
    Citation - Scopus: 20
    Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@ir Core-Shell Nanoparticles
    (Amer Chemical Soc, 2020) Yurderi, Mehmet; Top, Tuba; Bulut, Ahmet; Kanberoglu, Gulsah Saydan; Kaya, Murat; Zahmakiran, Mehmet; Chemical Engineering
    Hydrazine borane (HB; N2H4BH3) has been considered to be one of the most promising solid chemical hydrogen storage materials owing to its high hydrogen capacity and stability under ambient conditions. Despite that, the high purity of hydrogen production from the complete dehydrogenation of HB stands as a major problem that needs to be solved for the convenient use of HB in on-demand hydrogen production systems. In this study, we describe the development of a new catalytic material comprised of bimetallic Ni@Ir core-shell nanoparticles (NPs) supported on OMS-2-type manganese oxide octahedral molecular sieve nanorods (Ni@Ir/OMS-2), which can reproducibly be prepared by following a synthesis protocol including (i) the oleylamine-mediated preparation of colloidal Ni@Ir NPs and (ii) wet impregnation of these ex situ synthesized Ni@Ir NPs onto the OMS-2 surface. The characterization of Ni@Ir/OMS-2 has been done by using various spectroscopic and visualization techniques, and their results have revealed the formation of well-dispersed Ni@Ir core-shell NPs on the surface of OMS-2. The catalytic employment of Ni@Ir/OMS-2 in the dehydrogenation of HB showed that Ni-0.22@Ir-0.78/OMS-2 exhibited high dehydrogenation selectivity (>99%) at complete conversion with a turnover frequency (TOF) value of 2590 h(-1) at 323 K, which is the highest activity value among all reported catalysts for the complete dehydrogenation of HB. Furthermore, the Ni-0.22@Ir-0.78/OMS-2 catalyst enables facile recovery and high stability against agglomeration and leaching, which make it a reusable catalyst in the complete dehydrogenation of HB. The studies reported herein also include the collection of wealthy kinetic data to determine the activation parameters for Ni-0.22@Ir-0.78/OMS-2-catalyzed dehydrogenation of HB.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 8
    Chromium Based Metal-Organic Framework Mil-101 Decorated Palladium Nanoparticles for the Methanolysis of Ammonia-Borane
    (Royal Soc Chemistry, 2020) Caner, Nurdan; Yurderi, Mehmet; Bulut, Ahmet; Kanberoglu, Gulsah Saydan; Kaya, Murat; Zahmakiran, Mehmet; Chemical Engineering
    Palladium nanoparticles stabilized by an MIL-101 metal-organic framework (Pd@MIL-101) are synthesized by a novel synthesis approach. A Pd@MIL-101 catalyst facilitates H(2)generation from the methanolysis of ammonia-borane with record catalytic activity (TOF = 1080 min(-1)) at room temperature. Moreover, the exceptional stability of Pd@MIL-101 makes it a reusable heterogeneous catalyst in this catalytic transformation.
  • Article
    Citation - WoS: 148
    Citation - Scopus: 150
    Pd-mnox< Nanoparticles Dispersed on Amine-Grafted Silica: Highly Efficient Nanocatalyst for Hydrogen Production From Additive-Free Dehydrogenation of Formic Acid Under Mild Conditions
    (Elsevier Science Bv, 2015) Bulut, Ahmet; Yurderi, Mehmet; Karatas, Yasar; Zahmakiran, Mehmet; Kivrak, Hilal; Gulcan, Mehmet; Kaya, Murat; Chemical Engineering
    Herein we report the development of a new highly active, selective and reusable nanocatalyst for additive-free dehydrogenation of formic acid (HCOOH), which has great potential as a safe and convenient hydrogen carrier for fuel cells, under mild conditions. The new catalyst system consisting of bimetallic Pd-MnOx nanoparticles supported on aminopropyl functionalized silica (Pd-MnOx/SiO2-NH2) was simply and reproducibly prepared by deposition-reduction technique in water at room temperature. The characterization of Pd-mnO(x)/SiO2-NH2 catalyst was done by the combination of multipronged techniques, which reveals that the existence of highly crystalline individually nucleated Pd(0) and MnOx nanoparticles (d(mean) = 4.6 +/- 1.2 nm) on the surface of aminopropyl functionalized silica. These supported Pd-MnOx nanoparticles can catalyze the additive-free dehydrogenation of formic acid with record activity (TOF = 1300 h(-1)) at high selectivity (>99%) and conversion (>99%) under mild conditions (at 50 degrees C and under air). Moreover, easy recovery plus high durability of these supported Pd-MnOx nanoparticles make them a reusable heterogeneous catalyst in the additive-free dehydrogenation of formic acid. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 50
    Citation - Scopus: 53
    Atomic Layer Deposition-sio2 Layers Protected Pdconi Nanoparticles Supported on Tio2 Nanopowders: Exceptionally Stable Nanocatalyst for the Dehydrogenation of Formic Acid
    (Elsevier Science Bv, 2017) Caner, Nurdan; Bulut, Ahmet; Yurderi, Mehmet; Ertas, Ilknur Efecan; Kivrak, Hilal; Kaya, Murat; Zahmakiran, Mehmet; Chemical Engineering
    TiO2 nanopowders supported trimetallic PdCoNi alloy nanoparticles were simply and reproducibly prepared by wet-impregnation followed by simultaneous reduction method, then to enhance their stability against to sintering and leaching atomic layer deposition (ALD) technique was utilized to grow SiO2 layers amongst these surface bound PdCoNi alloy nanoparticles (PdCoNi/TiO2-ALD-SiO2). These new nanomaterials are characterized by the combination of complimentary techniques and sum of their results exhibited that the formation of ALD-SiO2 layers protected well-dispersed and highly crystalline PdCoNi alloy nanoparticles (ca. 3.52 nm) supported on TiO2 nanopowders. The catalytic performance of the resulting PdCoNi/TiO2-ALD-SiO2 in terms of activity, selectivity and stability was investigated in the dehydrogenation of aqueous formic acid (HCOOH), which has recently been suggested as a promising hydrogen storage material with a 4.4 wt% hydrogen capacity, solution under mild conditions. The results collected from our systematic studies revealed that PdCoNi/TiO2-ALD-SiO2 nanomaterial can act as highly active and selective nanocatalyst in the formic acid dehydrogenation at room temperature by providing an initial turnover frequency (TOF) value of 207 mol H-2/mol metal;: h and >99% of dehydrogenation selectivity at almost complete conversion. More importantly, the catalytic reusability experiments separately carried out with PdCoNi/TiO2-ALD-SiO2 and PdCoNi/TiO2 nanocatalysts in the dehydrogenation of formic acid under more forcing conditions pointed out that PdCoNi/TiO2-ALD-SiO2 nanocatalyst displays unprecedented catalytic stability against to leaching and sintering throughout the reusability experiments it retains almost its inherent activity, selectivity and conversion even at 20th reuse, whereas analogous PdCoNi/TiO2 completely lost its catalytic performance. (C) 2017 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 135
    Citation - Scopus: 140
    Carbon Dispersed Copper-Cobalt Alloy Nanoparticles: a Cost-Effective Heterogeneous Catalyst With Exceptional Performance in the Hydrolytic Dehydrogenation of Ammonia-Borane
    (Elsevier, 2016) Bulut, Ahmet; Yurderi, Mehmet; Ertas, Ilknur Efecan; Celebi, Metin; Kaya, Murat; Zahmakiran, Mehmet; Chemical Engineering
    Herein, we report the development of a new and cost-effective nanocatalyst for the hydrolytic dehydrogenation of ammonia-borane (NH3BH3), which is considered to be one of the most promising solid hydrogen carriers due to its high gravimetric hydrogen storage capacity (19.6 wt%) and low molecular weight. The new catalyst system consisting of bimetallic copper-cobalt alloy nanoparticles supported on activated carbon was simply and reproducibly prepared by surfactant-free deposition-reduction technique at room temperature. The characterization of this new catalytic material was done by the combination of multi-pronged techniques including ICP-MS, XRD, XPS, BFTEM, HR-TEM, STEM and HAADF-STEM-line analysis. The sum of their results revealed that the formation of copper-cobalt alloy nanoparticles (d(mean) =1.8 nm) on the surface of activated carbon (CuCo/C). These new carbon supported copper-cobalt alloy nanoparticles act as highly active catalyst in the hydrolytic dehydrogenation of ammonia-borane, providing an initial turnover frequency of TOF = 2700 h(-1) at 298 K, which is not only higher than all the non-noble metal catalysts but also higher than the majority of the noble metal based homogeneous and heterogeneous catalysts employed in the same reaction. More importantly, easy recovery and high durability of these supported CuCo nanoparticles make CuCo/C recyclable heterogeneous catalyst for the hydrolytic dehydrogenation of ammonia-borane. They retain almost their inherent activity even at 10th catalytic reuse in the hydrolytic dehydrogenation of ammonia-borane at 298K. (C) 2015 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 124
    Mnox< Pdag Alloy Nanoparticles for the Additive-Free Dehydrogenation of Formic Acid at Room Temperature
    (Amer Chemical Soc, 2015) Bulut, Ahmet; Yurderi, Mehmet; Karatas, Yasar; Say, Zafer; Kivrak, Hilal; Kaya, Murat; Zahmakiran, Mehmet; Chemical Engineering
    Formic acid (HCOOH) has a great potential as a safe and a convenient hydrogen carrier for fuel cell applications. However, efficient and CO-free hydrogen production through the decomposition of formic acid at low temperatures (<363 K) in the absence of additives constitutes a major challenge. Herein, we present a new heterogeneous catalyst system composed of bimetallic PdAg alloy and MnOx nanoparticles supported on amine-grafted silica facilitating the liberation of hydrogen at room temperature through the dehydrogenation of formic acid in the absence of any additives with remarkable activity (330 mol H-2 center dot mol catalyst(-1)center dot h(-1)) and selectivity (>99%) at complete conversion (>99%). Moreover this new catalytic system enables facile catalyst recovery and very high stability against agglomeration, leaching, and CO poisoning. Through a comprehensive set of structural and functional characterization experiments, mechanistic origins of the unusually high catalytic activity, selectivity, and stability of this unique catalytic system are elucidated. Current heterogeneous catalytic architecture presents itself as an excellent contender for clean hydrogen production via room-temperature additive-free dehydrogenation of formic acid for on-board hydrogen fuel cell applications.
  • Correction
    Citation - WoS: 1
    Citation - Scopus: 2
    Supported Copper-Copper Oxide Nanoparticles as Active, Stable and Low-Cost Catalyst in the Methanolysis of Ammonia-Borane for Chemical Hydrogen Storage (vol 165, Pg 169, 2015)
    (Elsevier, 2016) Yurderi, Mehmet; Bulut, Ahmet; Ertas, Ilknur Efecan; Zahmakiran, Mehmet; Kaya, Murat; Chemical Engineering
    [No Abstract Available]
  • Article
    Citation - WoS: 23
    Citation - Scopus: 27
    Nanocrystalline Metal Organic Framework (mil-101) Stabilized Copper Nanoparticles: Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane
    (Elsevier Science Sa, 2018) Baguc, Ismail Burak; Ertas, Ilknur Efecan; Yurderi, Mehmet; Bulut, Ahmet; Zahmakiran, Mehmet; Kaya, Murat; Chemical Engineering
    The copper nanoparticles stabilized by nanocrystalline MIL-101 framework (Cu/nano-MIL-101) was reproducibly prepared by following double solvent method combined with liquid phase chemical reduction technique. The characterization of the resulting new material was done by using various analytical techniques including ICP-OES, P-XRD, N-2-adsorption-desorption, XPS, FE-SEM, SEM-EDX, BFTEM and HAADF-STEM; the summation of their results reveals that the formation of well-dispersed and very small sized (0.8 nm) copper nanoparticles within nanocrystalline MIL-101 framework. The catalytic performance of Cu/nano-MIL-101 in terms of activity and stability was tested in the hydrolytic dehydrogenation of methylamine borane (CH3NH2BH3), which has been considered as one of the attractive materials for the efficient chemical hydrogen storage. Cu/nano-MIL-101 catalyzes the hydrolytic dehydrogenation of methylamine borane with high activity (turnover frequency; TOF = 257 mot H-2/mol Cu x h) and conversion ( > 99%) under air at room temperature. Moreover, these nano-MIL-101 framework stabilized copper nanoparticles show great durability against to sintering and leaching, which make Cu/nano-MIL-101 reusable nanocatalyst in the hydrolytic dehydrogenation of methylamine-borane. Cu/nano-MIL-101 nanocatalyst retains 83% of its inherent activity at complete conversion even at 10th recycle in the hydrolytic dehydrogenation of methylamine borane.
  • Article
    Citation - WoS: 118
    Citation - Scopus: 126
    Supported Copper-Copper Oxide Nanoparticles as Active, Stable and Low-Cost Catalyst in the Methanolysis of Ammonia-Borane for Chemical Hydrogen Storage
    (Elsevier Science Bv, 2015) Yurderi, Mehmet; Bulut, Ahmet; Ertas, Ilknur Efecan; Zahmakiran, Mehmet; Kaya, Murat; Chemical Engineering
    The physical mixture of copper (Cu) copper(I) oxide (Cu2O) and copper(II) oxide (CuO) nanoparticles supported on activated carbon (Cu-Cu2O-CuO/C) were reproducibly prepared by a simple deposition-reduction technique without using any stabilizer in water at room temperature. The characterization of the resulting material by ICP-OES, P-XRD, XPS, DR-UV/vis, BFTEM and HRTEM techniques reveals that the formation of well-dispersed highly crystalline 3.8 +/- 1.7 nm nanoparticles on the surface of activated carbon. These carbon supported Cu-Cu2O-CuO nanoparticles were employed as heterogeneous catalyst in the methanolysis of ammonia-borane (NH3BH3), which has been considered as one of the attractive materials for the efficient storage of hydrogen, under mild conditions. We found that only 3.0 mol % Cu-Cu2O-CuO/C catalyst is enough to catalyze the methanolysis of ammonia-borane with high activity (TOF = 24 min(-1)) and conversion (>99%) at room temperature. More importantly, the exceptional stability of supported Cu-Cu2O-CuO nanoparticles against to sintering and leaching make Cu-Cu2O-CuO/C recyclable catalyst for the methanolysis of ammonia-borane. Cu-Cu2O-CuO/C catalyst retains >76% of its initial activity with 94% of conversion even at 8th recycle in the methanolysis of ammonia-borane at complete conversion. The study reported here also includes the collection of kinetic data for Cu-Cu2O-CuO/C catalyzed methanolysis of ammonia-borane depending on catalyst [Cu], substrate [NH3BH3] concentrations and temperature to determine the rate expression and the activation parameters (E-a, Delta H-#, and Delta S-#) of the catalytic reaction. (C) 2014 Published by Elsevier B.V.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 13
    Ruthenium Nanoparticles Supported on Reduced Graphene Oxide: Efficient Catalyst for the Catalytic Reduction of Cr(vi) in the Presence of Amine-Boranes
    (Wiley-v C H verlag Gmbh, 2020) Yurderi, Mehmet; Bulut, Ahmet; Kanberoglu, Gulsah Saydan; Kaya, Murat; Kanbur, Yasin; Zahmakiran, Mehmet; Chemical Engineering
    Hexavalent chromium (Cr(VI)) is a toxic, mutagen and carcinogen contaminant exist in surface and groundwater, while its reduced form trivalent chromium (Cr(III)) is known as an essential element to normal carbohydrate, lipid and protein metabolism in nature. Addressed herein, for the first time, ruthenium nanoparticles supported on reduced graphene oxide (Ru@rGO) catalyze the reduction of aqueous Cr(VI) to Cr(III) in the presence of amine-boranes; ammonia-borane (AB; NH3BH3), methylamine-borane (MeAB; CH3NH2BH3), dimethylamine-borane (DMAB; (CH3)(2)NHBH3) as reducing agents under mild conditions (at room temperature and under air). Ru@rGO catalyst was reproducibly fabricated through a double-solvent method followed by wet-chemical reduction and characterized by using various spectroscopic and visualization techniques, which showed that the formation of well-dispersed and highly crystalline ruthenium(0) nanoparticles with a mean particle size of 2.7 +/- 0.9 nm on the surface of rGO. The catalytic performance of Ru@rGO was investigated in terms of activity and stability in the ammonia-borane assisted reduction of Cr(VI) to Cr(III), and the sum of the results gained from these catalytic tests revealed that Ru@rGO acts as both active (TOF=7.6 mol Cr2O72-/mol Ru.min) and stable (80% of its initial activity at 90% conversion at 5(th)reuse) heterogeneous catalyst in this significant catalytic transformation. This study also reports kinetic studies for Ru@rGO catalyzed Cr(VI) reduction in the presence of ammonia-borane depending on ruthenium ([Ru]), ammonia-borane ([AB]) concentrations and temperature to shed some light on the nature of the catalytic reaction and activation parameters.