Atomic Layer Deposition-sio<sub>2</Sub> Layers Protected Pdconi Nanoparticles Supported on Tio<sub>2</Sub> Nanopowders: Exceptionally Stable Nanocatalyst for the Dehydrogenation of Formic Acid
No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Open Access Color
Green Open Access
Yes
OpenAIRE Downloads
1
OpenAIRE Views
2
Publicly Funded
No
Abstract
TiO2 nanopowders supported trimetallic PdCoNi alloy nanoparticles were simply and reproducibly prepared by wet-impregnation followed by simultaneous reduction method, then to enhance their stability against to sintering and leaching atomic layer deposition (ALD) technique was utilized to grow SiO2 layers amongst these surface bound PdCoNi alloy nanoparticles (PdCoNi/TiO2-ALD-SiO2). These new nanomaterials are characterized by the combination of complimentary techniques and sum of their results exhibited that the formation of ALD-SiO2 layers protected well-dispersed and highly crystalline PdCoNi alloy nanoparticles (ca. 3.52 nm) supported on TiO2 nanopowders. The catalytic performance of the resulting PdCoNi/TiO2-ALD-SiO2 in terms of activity, selectivity and stability was investigated in the dehydrogenation of aqueous formic acid (HCOOH), which has recently been suggested as a promising hydrogen storage material with a 4.4 wt% hydrogen capacity, solution under mild conditions. The results collected from our systematic studies revealed that PdCoNi/TiO2-ALD-SiO2 nanomaterial can act as highly active and selective nanocatalyst in the formic acid dehydrogenation at room temperature by providing an initial turnover frequency (TOF) value of 207 mol H-2/mol metal;: h and >99% of dehydrogenation selectivity at almost complete conversion. More importantly, the catalytic reusability experiments separately carried out with PdCoNi/TiO2-ALD-SiO2 and PdCoNi/TiO2 nanocatalysts in the dehydrogenation of formic acid under more forcing conditions pointed out that PdCoNi/TiO2-ALD-SiO2 nanocatalyst displays unprecedented catalytic stability against to leaching and sintering throughout the reusability experiments it retains almost its inherent activity, selectivity and conversion even at 20th reuse, whereas analogous PdCoNi/TiO2 completely lost its catalytic performance. (C) 2017 Elsevier B.V. All rights reserved.
Description
Demir KIVRAK, Hilal/0000-0001-8001-7854; Ertas, Ilknur Efecan/0000-0003-0997-7523; Kivrak, Hilal/0000-0001-8001-7854; Yurderi, Mehmet/0000-0002-0233-8940; Bulut, ahmet/0000-0002-1697-8623; Yurderi, Mehmet/0000-0002-6761-3763; Kaya, Murat/0000-0002-2458-8924
Keywords
Atomic layer deposition, Nanocatalyst, Alloy, Formic acid, Dehydrogenation
Turkish CoHE Thesis Center URL
Fields of Science
02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
53
Source
Applied Catalysis B: Environmental
Volume
210
Issue
Start Page
470
End Page
483
PlumX Metrics
Citations
CrossRef : 54
Scopus : 54
Captures
Mendeley Readers : 43
Google Scholar™

OpenAlex FWCI
2.77723971
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

7
AFFORDABLE AND CLEAN ENERGY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

11
SUSTAINABLE CITIES AND COMMUNITIES

13
CLIMATE ACTION

14
LIFE BELOW WATER

15
LIFE ON LAND

17
PARTNERSHIPS FOR THE GOALS


