Atomic Layer Deposition-sio<sub>2</Sub> Layers Protected Pdconi Nanoparticles Supported on Tio<sub>2</Sub> Nanopowders: Exceptionally Stable Nanocatalyst for the Dehydrogenation of Formic Acid

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

1

OpenAIRE Views

2

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

TiO2 nanopowders supported trimetallic PdCoNi alloy nanoparticles were simply and reproducibly prepared by wet-impregnation followed by simultaneous reduction method, then to enhance their stability against to sintering and leaching atomic layer deposition (ALD) technique was utilized to grow SiO2 layers amongst these surface bound PdCoNi alloy nanoparticles (PdCoNi/TiO2-ALD-SiO2). These new nanomaterials are characterized by the combination of complimentary techniques and sum of their results exhibited that the formation of ALD-SiO2 layers protected well-dispersed and highly crystalline PdCoNi alloy nanoparticles (ca. 3.52 nm) supported on TiO2 nanopowders. The catalytic performance of the resulting PdCoNi/TiO2-ALD-SiO2 in terms of activity, selectivity and stability was investigated in the dehydrogenation of aqueous formic acid (HCOOH), which has recently been suggested as a promising hydrogen storage material with a 4.4 wt% hydrogen capacity, solution under mild conditions. The results collected from our systematic studies revealed that PdCoNi/TiO2-ALD-SiO2 nanomaterial can act as highly active and selective nanocatalyst in the formic acid dehydrogenation at room temperature by providing an initial turnover frequency (TOF) value of 207 mol H-2/mol metal;: h and >99% of dehydrogenation selectivity at almost complete conversion. More importantly, the catalytic reusability experiments separately carried out with PdCoNi/TiO2-ALD-SiO2 and PdCoNi/TiO2 nanocatalysts in the dehydrogenation of formic acid under more forcing conditions pointed out that PdCoNi/TiO2-ALD-SiO2 nanocatalyst displays unprecedented catalytic stability against to leaching and sintering throughout the reusability experiments it retains almost its inherent activity, selectivity and conversion even at 20th reuse, whereas analogous PdCoNi/TiO2 completely lost its catalytic performance. (C) 2017 Elsevier B.V. All rights reserved.

Description

Demir KIVRAK, Hilal/0000-0001-8001-7854; Ertas, Ilknur Efecan/0000-0003-0997-7523; Kivrak, Hilal/0000-0001-8001-7854; Yurderi, Mehmet/0000-0002-0233-8940; Bulut, ahmet/0000-0002-1697-8623; Yurderi, Mehmet/0000-0002-6761-3763; Kaya, Murat/0000-0002-2458-8924

Keywords

Atomic layer deposition, Nanocatalyst, Alloy, Formic acid, Dehydrogenation

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
53

Source

Applied Catalysis B: Environmental

Volume

210

Issue

Start Page

470

End Page

483

Collections

PlumX Metrics
Citations

CrossRef : 54

Scopus : 54

Captures

Mendeley Readers : 43

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.77723971

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo