Azad, Saeıd Kazemzadeh

Loading...
Profile Picture
Name Variants
Azad, S. Kazemzadeh
Saeid Kazemzadeh, Azad
S.K.Azad
Azad, Saeid Kazemzadeh
S., Azad
Azad, Saeıd Kazemzadeh
A., Saeid Kazemzadeh
S.,Azad
Azad,S.K.
A.,Saeid Kazemzadeh
Saeıd Kazemzadeh, Azad
A.,Saeıd Kazemzadeh
Job Title
Doçent Doktor
Email Address
saeid.azad@atilim.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

21

Articles

19

Citation Count

390

Supervised Theses

2

Scholarly Output Search Results

Now showing 1 - 10 of 21
  • Article
    Citation Count: 3
    A Study of Shrink-Fitting for Optimal Design of Multi-Layer Composite Tubes Subjected to Internal and External Pressure
    (Springer, 2019) Akış, Tolga; Akis, Tolga; Azad, Saeıd Kazemzadeh; Civil Engineering; Department of Civil Engineering
    This paper addresses the effect of shrink-fitting on the optimal design of pressurized multi-layer composite tubes. Analytical solutions for structural response calculations are provided for axially constrained two- and three-layer shrink-fitted tubes under both internal and external pressure. A recently developed numerical evolutionary optimization algorithm is employed for weight and cost minimization of these assemblies. In order to investigate the effect of shrink-fitting, first, optimal material selection and thickness optimization of tightly fitted tubes, under either internal or both internal and external pressure, are accomplished without shrink-fitting. Next, under the same loading and boundary conditions the assemblies are optimized where shrink-fitting parameters are taken into account for weight and cost minimization. The numerical results obtained for multi-layer composite tubes with and without shrink-fitting indicate that more economical or lightweight assemblies can be obtained if shrink-fitting parameters are treated as additional design variables of the optimization problem. Furthermore, it is observed that considering the shrink-fitting parameters for optimal design becomes more advantageous in the test cases with a higher ratio of internal pressure to external pressure.
  • Article
    Citation Count: 16
    Design optimization of real-size steel frames using monitored convergence curve
    (Springer, 2021) Azad, Saeıd Kazemzadeh; Department of Civil Engineering
    It is an undeniable fact that there are main challenges in the use of metaheuristics for optimal design of real-size steel frames in practice. In general, steel frame optimization problems usually require an inordinate amount of processing time where the main portion of computational effort is devoted to myriad structural response computations during the optimization iterations. Moreover, the inherent complexity of steel frame optimization problems may result in poor performance of even contemporary or advanced metaheuristics. Beside the challenging nature of such problems, significant difference in geometrical properties of two adjacent steel sections in a list of available profiles can also mislead the optimization algorithm and may result in trapping the algorithm in a poor local optimum. Consequently, akin to other challenging engineering optimization instances, significant fluctuations could be observed in the final results of steel frame optimization problems over multiple runs even using contemporary metaheuristics. Accordingly, the main focus of this study is to improve the solution quality as well as the stability of results in metaheuristic optimization of real-size steel frames using a recently developed framework so-called monitored convergence curve (MCC). Two enhanced variants of the well-known big bang-big crunch algorithm are adopted as typical contemporary metaheuristic algorithms to evaluate the usefulness of the MCC framework in steel frame optimization problems. The numerical experiments using challenging test examples of real-size steel frames confirm the efficiency of the MCC integrated metaheuristics versus their standard counterparts.
  • Article
    Citation Count: 5
    Improving Computational Efficiency of Bat-Inspired Algorithm in Optimal Structural Design
    (Sage Publications inc, 2015) Azad, Saeıd Kazemzadeh; Azad, S. Kazemzadeh; Department of Civil Engineering
    Bat-inspired (BI) algorithm is a recent metaheuristic optimization technique that simulates echolocation behavior of bats in seeking a design space. Along the same line with almost all metaheuristics, this algorithm also entails a large number of time-consuming structural analyses in structural design optimization applications. This study is focused on improving computational efficiency of the BI algorithm in optimum structural design. The number of structural analyses required by BI algorithm in the course of design optimization is reduced considerably by incorporating an upper bound strategy (UBS) into the solution procedure. The performance of the resulting algorithm, i.e. UBS integrated BI algorithm (UBI), is evaluated in discrete sizing optimization of large-scale steel skeletal structures designed for minimum weight according to American Institute of Steel Construction-Allowable Stress Design provisions. The numerical results verify that the UBI results in a significant gain in the computational efficiency of the standard algorithm.
  • Article
    Citation Count: 0
    Cost Efficient Design of Mechanically Stabilized Earth Walls Using Adaptive Dimensional Search Algorithm
    (Turkish Chamber Civil Engineers, 2020) Akış, Ebru; Azad, Saeid Kazemzadeh; Azad, Saeıd Kazemzadeh; Civil Engineering; Department of Civil Engineering
    Mechanically stabilized earth walls are among the most commonly used soil-retaining structural systems in the construction industry. This study addresses the optimum design problem of mechanically stabilized earth walls using a recently developed metaheuristic optimization algorithm, namely adaptive dimensional search. For a cost efficient design, different types of steel reinforcement as well as reinforced backfill soil are treated as discrete design variables. The performance of the adaptive dimensional search algorithm is investigated through cost optimization instances of mechanically stabilized earth walls under realistic design criteria specified by standard design codes. The numerical results demonstrate the efficiency and robustness of the adaptive dimensional search algorithm in minimum cost design of mechanically stabilized earth walls and further highlight the usefulness of design optimization in engineering practice.
  • Article
    Citation Count: 25
    Monitored convergence curve: a new framework for metaheuristic structural optimization algorithms
    (Springer, 2019) Azad, Saeıd Kazemzadeh; Department of Civil Engineering
    Metaheuristic optimization algorithms, by nature, depend on random processes, and therefore, performing numerous algorithm runs is inevitable to locate a reasonably good solution. Although executing the algorithms for small-size or trivial structural optimization problems could be computationally affordable, when dealing with challenging optimization problems, there is almost no chance of performing numerous independent runs of metaheuristics in a timely manner. This difficulty is basically due to the limitations in computational technologies as well as the excessive computational cost of such problems. In such cases that the number of independent runs is limited to a small number, each optimization run becomes highly valuable and, therefore, the stability of results becomes much more significant. In the present study, it is attempted to monitor the convergence curve of each succeeding run of the algorithm with respect to the information obtained in the previous runs. An easy-to-implement yet efficient framework is proposed for metaheuristic structural optimization algorithms where every succeeding run is monitored at certain intervals named as solution monitoring period. The solution monitoring period is selected such that, at each run, on the one hand, the algorithm could explore the search space to improve the solution quality, and on the other hand, the algorithm is occasionally forced to return to the previously visited more promising solutions if it is not able to improve the solution after a certain number of iterations. The numerical experiments using challenging test instances with up to 354 design variables indicate that, in general, the proposed approach helps to improve the solution quality as well as the robustness or stability of results in metaheuristic structural optimization.
  • Article
    Citation Count: 21
    Optimum design of steel braced frames considering dynamic soil-structure interaction
    (Springer, 2019) Azad, Saeıd Kazemzadeh; Azad, Saeid Kazemzadeh; Department of Civil Engineering
    Recent studies on design optimization of steel frames considering soil-structure interaction have focused on static loading scenarios, and limited work has been conducted to address the design optimization under dynamic soil-structure interaction. In the present work, first, a platform is developed to perform optimization of steel frames under seismic loading considering dynamic soil-structure interaction (SSI) in order to quantify the effects of earthquake records on the optimum design. Next, verification of the adopted modeling technique is conducted using comparison of the results with the reference solution counterparts in frequency domain. For time history analyses, records from past events are selected and scaled to a target spectrum using simple scaling approach as well as spectrum matching technique. For sizing of the steel frames, a recently developed metaheuristic optimization algorithm, namely exponential big bang-big crunch optimization method, is employed. To alleviate the computational burden of the optimization process, the metaheuristic algorithm is integrated with the so-called upper bound strategy. Effects of factors such as the building height, presence of soil domain, and the utilized ground motion scaling technique are investigated and discussed. The numerical results obtained based on 5- and 10-story steel braced frame dual systems reveal that, although dynamic SSI reduced the seismic demands to some extent, given the final design pertains to different load combinations, the optimum weight difference is not considerable.
  • Article
    Citation Count: 9
    Multi-stage guided stochastic search for optimization and standardization of free-form steel double-layer grids
    (Elsevier Science inc, 2021) Aminbakhsh, Saman; Aminbakhsh, Saman; Azad, Saeıd Kazemzadeh; Civil Engineering; Department of Civil Engineering
    There has been a growing interest in the use of free-form structures with irregularly curved yet aesthetically pleasing configurations in the recent decades. Although design optimization of regular steel grids has been well addressed in the literature of structural optimization, still limited work has been devoted to optimum design of real-size free-form grid structures. On the one hand, a main obstacle when dealing with real-size free-form steel grids is the excessive computational effort associated with contemporary evolutionary optimization algorithms. On the other hand, it is generally perceived that the obtained final designs using conventional optimization algorithms may not necessarily be favored in practice if certain provisions are not stipulated by the algorithm to preclude an abundance of distinct steel section sizes in the final design. Hence, instead of offering a single optimum or near optimum design, it would be more desirable to provide the designer or decision maker with a Pareto front set of non-dominated design alternatives taking into account both the minimum weight as well as the assortment of available steel section sizes in the final design. Accordingly, in this paper, a computationally efficient multi-stage guided stochastic search algorithm is proposed for optimization and standardization of realsize free-form steel double-layer grids. A gradual design-oriented section elimination approach is followed where in the first optimization stage, a complete set of commercially available steel sections is introduced to the algorithm and in the succeeding stages, the size of section list is reduced by eliminating the redundant sizes. Two variants of the algorithm are employed to demonstrate the usefulness of the proposed technique in challenging test examples of free-form steel double-layer grids, and the obtained Pareto fronts are plotted to illustrate the trade-off between minimum weight and assortment of steel section sizes in the final design.
  • Article
    Citation Count: 34
    Discrete sizing optimization of steel trusses under multiple displacement constraints and load cases using guided stochastic search technique
    (Springer, 2015) Azad, Saeıd Kazemzadeh; Hasancebi, O.; Department of Civil Engineering
    The guided stochastic search (GSS) is a computationally efficient design optimization technique, which is originally developed for discrete sizing optimization problems of steel trusses with a single displacement constraint under a single load case. The present study aims to investigate the GSS in a more general class of truss sizing optimization problems subject to multiple displacement constraints and load cases. To this end, enhancements of the GSS are proposed in the form of two alternative approaches that enable the technique to deal with multiple displacement/load cases. The first approach implements a methodology in which the most critical displacement direction is considered only when guiding the search process. The second approach, however, takes into account the cumulative effect of all the critical displacement directions in the course of optimization. Advantage of the integrated force method of structural analysis is also utilized for further reduction of the computational effort in these approaches. The proposed enhancements of GSS are investigated and compared with some selected techniques of design optimization through six truss structures that are sized for minimum weight. The numerical results reveal that both enhancements generally provide promising solutions with an insignificant computational effort.
  • Article
    Citation Count: 2
    Structural Design Optimization of Multi-layer Spherical Pressure Vessels: A Metaheuristic Approach
    (Springer, 2019) Akış, Tolga; Azad, Saeid Kazemzadeh; Azad, Saeıd Kazemzadeh; Civil Engineering; Department of Civil Engineering
    This study addresses the optimum design problem of multi-layer spherical pressure vessels based on von Mises yield criterion. In order to compute the structural responses under internal pressure, analytical solutions for one-, two-, and three-layer spherical pressure vessels are provided. A population-based metaheuristic algorithm is reformulated for optimum material selection as well as thickness optimization of multi-layer spherical pressure vessels. Furthermore, in order to enhance the computational efficiency of the optimization algorithm, upper bound strategy is also integrated with the algorithm for reducing the total number of structural response evaluations during the optimization iterations. The performance of the algorithm is investigated through weight and cost minimization of one-, two- and three-layer spherical pressure vessels and the results are presented in detail. The obtained numerical results, based on different internal pressures as well as vessel sizes, indicate the usefulness and efficiency of the employed methodology in optimum design of multi-layer spherical pressure vessels.
  • Article
    Citation Count: 5
    e-constraint guided stochastic search with successive seeding for multi-objective optimization of large-scale steel double-layer grids
    (Elsevier, 2022) Aminbakhsh, Saman; Aminbakhsh, Saman; Azad, Saeıd Kazemzadeh; Civil Engineering; Department of Civil Engineering
    This paper proposes a design-driven structural optimization algorithm named e-constraint guided stochastic search (e-GSS) for multi-objective design optimization of large-scale steel double-layer grids having numerous discrete design variables. Based on the well-known e-constraint method, first, the multi-objective optimization problem is transformed into a set of single-objective optimization problems. Next, each single-objective optimization problem is tackled using an enhanced reformulation of the standard guided stochastic search algorithm proposed based on a stochastic maximum incremental/decremental step size approach. Moreover, a successive seeding strategy is employed in conjunction with the proposed e-GSS algorithm to improve its performance in multi-objective optimization of large-scale steel double-layer grids. The numerical results obtained through multi-objective optimization of three challenging test examples, namely a 1728-member double-layer compound barrel vault, a 2304-member double-layer scallop dome, and a 2400-member double-layer multi-radial dome, demonstrate the usefulness of the proposed e-GSS algorithm in generating Pareto fronts of the foregoing multi-objective structural optimization problems with up to 2400 distinct sizing variables.