Emin, Ali

Loading...
Profile Picture
Name Variants
E., Ali
Ali, Emin
A.,Emin
E.,Ali
Emin,A.
Ali Emin
A., Emin
Emin,Ali
Emin, Ali
Job Title
Doktor Öğretim Üyesi
Email Address
ali.amini@atilim.edu.tr
Main Affiliation
Automotive Engineering
Status
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

0

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

0

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

0

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

0

Research Products

1

NO POVERTY
NO POVERTY Logo

0

Research Products

5

GENDER EQUALITY
GENDER EQUALITY Logo

0

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

0

Research Products

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

0

Research Products

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo

0

Research Products

15

LIFE ON LAND
LIFE ON LAND Logo

0

Research Products

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

0

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

4

Research Products

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

0

Research Products

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

0

Research Products

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

0

Research Products

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

0

Research Products

13

CLIMATE ACTION
CLIMATE ACTION Logo

0

Research Products
Documents

21

Citations

610

h-index

11

Documents

19

Citations

527

Scholarly Output

8

Articles

6

Views / Downloads

37/6568

Supervised MSc Theses

1

Supervised PhD Theses

0

WoS Citation Count

71

Scopus Citation Count

82

WoS h-index

4

Scopus h-index

4

Patents

0

Projects

3

WoS Citations per Publication

8.88

Scopus Citations per Publication

10.25

Open Access Source

3

Supervised Theses

1

Google Analytics Visitor Traffic

JournalCount
2024 International Mechanical Engineering Congress and Exposition-IMECE -- NOV 17-21, 2024 -- Portland, OR1
Actuators1
Energies1
International Journal of Thermal Sciences1
Journal of Energy Storage1
Current Page: 1 / 2

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 1 of 1
  • Article
    Citation - WoS: 28
    Citation - Scopus: 36
    Experimental and Transient Cfd Analysis of Parallel-Flow Solar Air Collectors With Paraffin-Filled Recyclable Aluminum Cans as Latent Heat Energy Storage Unit
    (Elsevier, 2023) Tuncer, Azim Dogus; Amini, Ali; Khanlari, Ataollah
    In the present study, it is aimed to improve the overall performance of a parallel-flow solar air collector (PSC) using phase change material (PCM)-based latent heat energy storage unit and recyclable materials. In the simulation part of this work, two PSCs including a collector without modification and a collector equipped with PCM filled aluminum cans have been analyzed. The simulation part of the current work is handling the flow of air through the collectors and melting-solidification of PCM material inside the aluminum cans. Considering the simulation study results, three different PSC configurations have been manufactured including an unmodified PSC, a PSC with PCM-filled aluminum cans on the front side of the absorber and a PSC with PCM-filled aluminum cans on both sides (back and front) of the absorber surface. According to the results of the analyses, utilizing PCM-filled aluminum cans in both surfaces of the absorber plate of the PSC improved numerically and experimentally obtained exergetic efficiency values as 61.70% and 74.03%, respectively. Moreover, enviro-economic analysis has been conducted within the scope of this work. The payback periods of the analyzed systems were between 2.17 and 2.43 years. Employing PCM in the both sides of the absorber surface decreased the payback time of the system as 10.69% in comparison to the conventional PSC. Moreover, using PCMs on the single and double side of the absorber plate improved the annual carbon dioxide savings as 22.68% and 35.42%, respectively.