Qasrawı, Atef Fayez Hasan

Loading...
Profile Picture
Name Variants
Qasrawi, Atef Fayez
Atef Fayez Hasan, Qasrawı
Qasrawı,A.F.H.
Qasrawi,A.F.H.
Q., Atef Fayez Hasan
Q.,Atef Fayez Hasan
Atef Fayez Hasan, Qasrawi
Qasrawi, Atef Fayez Hasan
A.F.H.Qasrawı
A.F.H.Qasrawi
A., Qasrawi
A.,Qasrawı
Qasrawı, Atef Fayez Hasan
Qasrawi, A. F.
Qasrawi,A.F.
Qasrawi, AF
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef Fayez
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef
Job Title
Doçent Doktor
Email Address
atef.qasrawi@atilim.edu.tr
Main Affiliation
Department of Electrical & Electronics Engineering
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

0

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

0

Research Products

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

0

Research Products

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

0

Research Products

1

NO POVERTY
NO POVERTY Logo

0

Research Products

5

GENDER EQUALITY
GENDER EQUALITY Logo

0

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

0

Research Products

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

1

Research Products

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo

0

Research Products

15

LIFE ON LAND
LIFE ON LAND Logo

0

Research Products

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

0

Research Products

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

17

Research Products

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

0

Research Products

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

0

Research Products

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

0

Research Products

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

0

Research Products

13

CLIMATE ACTION
CLIMATE ACTION Logo

0

Research Products
This researcher does not have a Scopus ID.
This researcher does not have a WoS ID.
Scholarly Output

222

Articles

218

Views / Downloads

642/0

Supervised MSc Theses

0

Supervised PhD Theses

0

WoS Citation Count

1887

Scopus Citation Count

1907

WoS h-index

21

Scopus h-index

21

Patents

0

Projects

0

WoS Citations per Publication

8.50

Scopus Citations per Publication

8.59

Open Access Source

17

Supervised Theses

0

Google Analytics Visitor Traffic

JournalCount
Journal of Electronic Materials15
Crystal Research and Technology13
physica status solidi (a)12
Journal of Alloys and Compounds11
Materials Science in Semiconductor Processing11
Current Page: 1 / 11

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    Thickness Effects on the Dielectric Dispersion and Optical Conductivity Parameters of Cuo Thin Films
    (Wiley, 2020) Qasrawi, Atef F.; Qasrawı, Atef Fayez Hasan; Hamamdah, Alaa A.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    In this article, the effect of film thickness on the structural, optical, dielectric, and optical conductivity parameters of CuO thin films are reported. CuO thin films which are prepared by the physical vapor deposition technique under vacuum pressure of 10(-5) mbar with various thicknesses in the range of 50 to 1000 nm are observed to exhibit amorphous nature of growth. The values of the energy bands gaps, the spectral response of the dielectric constant and of the optical conductivity parameters are highly sensitive to the film thickness. Particularly, while the 50 nm thick CuO films exhibits quantum confinement which forces the material to have wide band gap (2.70 eV), the thicker films display an energy band gap in the infrared range of spectrum. It was also observed that the thicker the films, the more pronounced the nonlinear dielectric response. In addition, analysis of the optical conductivity parameters using Drude-Lorentz approach for optical conduction has shown that the 50 nm thick films can display drift mobility value of 4.65 cm(2)/Vs accompanied with plasmon frequency of 1.20 GHz and free carrier density of 7.5x10(17) cm(3). The Drude-Lorentz analysis has also shown that the free carrier density and the plasmon frequency of CuO decreases with increasing film thickness. This decrement is accompanied with enhancement in the drift mobility values which reaches 12.56 cm(2)/V s as the film thickness exceeds 250 nm. Such features of the thin layer of CuO make them suitable for the production of nano/microthin film transistors.
  • Article
    Citation - WoS: 11
    Citation - Scopus: 11
    Band Offsets, Optical Conduction, and Microwave Band Filtering Characteristics of Γ-in2se3< Heterojunctions
    (Wiley-v C H verlag Gmbh, 2020) Qasrawi, Atef F.; Kmail, Reham R.
    Herein, the design and experimental characterization of gamma-In2Se3/CuO interfaces are considered. Thin films of gamma-In(2)Se(3)are coated with thin layers of CuO at room temperature. The heterojunction device is structurally, morphologically, and optically characterized. It is observed that the coating of CuO onto gamma-In(2)Se(3)engenders the formation of CuSe(2)at the ultrathin interface. The gamma-In2Se3/CuO heterojunctions exhibit maximum possible conduction and valence band offsets of values 0.47 and 0.96 eV, respectively. The dielectric spectra display two dielectric resonance peaks at 2.96 and 1.78 eV. In addition, analyses of the optical conductivity spectra reveal accurate drift mobility and plasmon frequency values of 31.31 cm(2) Vs(-1)and 1.5 GHz, respectively. The ability of the device to control the signal propagation at gigahertz level is experimentally tested by the impedance spectroscopy technique which proved the ability of the device to behave as bandpass filters of notch frequency of 1.49 GHz. The gamma-In2Se3/CuO heterojunction devices are also observed to display terahertz cutoff frequency values of approximate to 24 THz in the infrared (IR) range of incident photon energy and approximate to 193 THz in the ultraviolet light range. The nonlinear optical performance of the device nominates it for use as terahertz/gigahertz band filters.