Qasrawı, Atef Fayez Hasan

Loading...
Profile Picture
Name Variants
Qasrawi, Atef Fayez
Atef Fayez Hasan, Qasrawı
Qasrawı,A.F.H.
Qasrawi,A.F.H.
Q., Atef Fayez Hasan
Q.,Atef Fayez Hasan
Atef Fayez Hasan, Qasrawi
Qasrawi, Atef Fayez Hasan
A.F.H.Qasrawı
A.F.H.Qasrawi
A., Qasrawi
A.,Qasrawı
Qasrawı, Atef Fayez Hasan
Qasrawi, A. F.
Qasrawi,A.F.
Qasrawi, AF
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef Fayez
Qasrawi, Atef F.
Qasrawi, Atef A.
Qasrawi, Atef
Job Title
Doçent Doktor
Email Address
atef.qasrawi@atilim.edu.tr
Main Affiliation
Department of Electrical & Electronics Engineering
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

This researcher does not have a Scopus ID.
This researcher does not have a WoS ID.
Scholarly Output

222

Articles

218

Views / Downloads

642/0

Supervised MSc Theses

0

Supervised PhD Theses

0

WoS Citation Count

1887

Scopus Citation Count

1907

WoS h-index

21

Scopus h-index

21

Patents

0

Projects

0

WoS Citations per Publication

8.50

Scopus Citations per Publication

8.59

Open Access Source

17

Supervised Theses

0

Google Analytics Visitor Traffic

JournalCount
Journal of Electronic Materials15
Crystal Research and Technology13
physica status solidi (a)12
Journal of Alloys and Compounds11
Materials Science in Semiconductor Processing11
Current Page: 1 / 11

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 1 of 1
  • Article
    Citation - WoS: 3
    Citation - Scopus: 4
    In Situ Observation of Heat-Assisted Hexagonal-Orthorhombic Phase Transitions in Se/Ag Sandwiched Structures and Their Effects on Optical Properties
    (Springer, 2019) Qasrawi, A. F.; Aloushi, Hadil D.
    In this work, two selenium layers of 500-nm thickness, nano-sandwiched with Ag nanosheets of 100-nm thickness (Se/Ag/Se), are subjected to in situ monitoring of the structural and optical transitions during heating over a temperature range of 303-473 K by x-ray diffraction and ultraviolet-visible light spectrophotometry, respectively. The Se/Ag/Se thin films are observed to exhibit a transformation from an amorphous to a polycrystalline phase at 343 K. Increasing the temperature above 363 K enhances the crystallinity of the hexagonal phase, reduces the microstrain, increases the crystallite size and reduces the defect density. Accordingly, the optical absorption spectra are redshifted upon heating. The redshift is accompanied by a transition in the energy band gap from 2.03 eV to 1.85 eV as the material structural phase is transformed from amorphous to polycrystalline. Increasing the temperature causes the energy band gap to shrink. Another permanent phase transformation from hexagonal to orthorhombic is detected when the Se/Ag/Se system is allowed to cool. Scanning electron microscopy images show that the phase transformation converts the grains of Se/Ag/Se films from wire-shaped to nanotubes. The second phase transformation causes a blueshift in the absorption coefficient spectra and increases the energy band gap. The structural and optical parameter enhancements achieved via heating render the Se thin films more suitable for optoelectronic applications.