Browsing by Author "Turhan, C."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - Scopus: 1Determination of Metabolic Rate From Physical Measurements of Heart Rate, Mean Skin Temperature and Carbon Dioxide Variation(Sakarya University, 2022) Özbey, M.F.; Çeter, A.E.; Turhan, C.Thermal comfort depends on four environmental parameters such as air temperature, mean radiant temperature, air velocity and relative humidity and two personal parameters, including clothing insulation and metabolic rate. Environmental parameters can be measured via objective sensors. However, personal parameters can be merely estimated in most of the studies. Metabolic rate is one of the problematic personal parameters that affect the accuracy of thermal comfort models. International thermal comfort standards still use a conventional metabolic rate table which is tabulated according to different activity tasks. On the other hand, ISO 8996 underestimates metabolic rates, especially when the time of activity level is short and rest time is long. To this aim, this paper aims to determine metabolic rates from physical measurements of heart rate, mean skin temperature and carbon dioxide variation by means of nineteen sample activities. 21 male and 17 female subjects with different body mass indices, sex and age are used in the study. The occupants are subjected to different activity tasks while heart rate, skin temperature and carbon dioxide variation are measured via objective sensors. The results show that the metabolic rate can be estimated with a multivariable non-linear regression equation with high accuracy of 0.97. © 2022, Sakarya University. All rights reserved.Review Citation - WoS: 119Citation - Scopus: 141Dynamic Thermal and Hygrometric Simulation of Historical Buildings: Critical Factors and Possible Solutions(Pergamon-elsevier Science Ltd, 2020) Akkurt, G. G.; Aste, N.; Borderon, J.; Buda, A.; Calzolari, M.; Chung, D.; Turhan, C.Building dynamic simulation tools, traditionally used to study the hygrothermal performance of new buildings during the preliminary design steps, have been recently adopted also in historical buildings, as a tool to investigate possible strategies for their conservation and the suitability of energy retrofit scenarios, according to the boundary conditions. However, designers often face with the lack of reliable thermophysical input data for various envelope components as well as with some intrinsic limitations in the simulation models, especially to describe the geometric features and peculiarities of the heritage buildings. This paper attempts to bridge this knowledge gap, providing critical factors and possible solutions to support hygrothermal simulations of historical buildings. The information collected in the present work could be used by researchers, specialists and policy-makers involved in the conservation of building's heritage, who need to address a detailed study of the hygrothermal performance of historical buildings thorugh dynamic simulation tools.Article Citation - WoS: 10Citation - Scopus: 12An Intelligent Indoor Guidance and Navigation System for the Visually Impaired(Taylor & Francis inc, 2022) Kahraman, M.; Turhan, C.Intelligent guidance in complex environments where various procedures are required for navigation is critical to achieving mobility for the visually impaired. This study presents a newly developed software prototype with a hybrid RFID/BLE infrastructure to provide intelligent navigation and guidance to the visually impaired in complex indoor environments. The system enables the users to input their purpose via a specially designed user interface, and provides intelligent guidance through a chain of destination targets which are determined according to the inherent procedures of the environment. Path optimization is performed by adaptation of the traveling salesman problem, and real-time instantaneous instructions are provided to guide the users through the predetermined destination points. For evaluation purposes, a hospital environment is constructed as an example of a complex environment and the system is tested by visually impaired participants. The results show that the intelligent purpose selection and destination evaluation mechanism modules of the system are found to be effective by all the participants.

