Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Entities
Browse GCRIS
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Temür, Burcu Gülmez"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    An Exhaustive Computer Search for Finding New Curves With Many Points Among Fibre Products of Two Kummer Covers Over $\\bbb{f}_5$ and $\\bbb{f}_7$
    (2013) Özbudak, Ferruh; Temür, Burcu Gülmez; Yayla, Oğuz
    In this paper we make an exhaustive computer search for finding new curves with many points among fibre products of 2 Kummer covers of the projective line over F5 and F7 . At the end of the search, we have 12 records and 6 new entries for the current Table of Curves with Many Points. In particular, we observe that the fibre product $y^3_1$ = $\\frac {5(x+2)(x +5)} {x}$, $y^3_2$ $\\frac {3x^2(x +5)} {x + 3}$ over F7 has genus 7 with 36 rational points. As this coincides with the Ihara bound, we conclude that the maximum number N7 (7) of F7 -rational points among all curves of genus 7 is 36. Our exhaustive search has been possible because of the methods given in the recent work by Özbudak and Temür (2012) for determining the number of rational points of such curves.
  • Loading...
    Thumbnail Image
    Article
    On a Class of Permutation Trinomials Over Finite Fields
    (Tubitak Scientific & Technological Research Council Turkey, 2024) Temür, Burcu Gülmez; Özkaya, Buket
    In this paper, we study the permutation properties of the class of trinomials of the form f (x) = x4q+1 + λ1xq+4 + λ2x2q+3 ∈ Fq2 [x] , where λ1, λ2 ∈ Fq and they are not simultaneously zero. We find all necessary and sufficient conditions on λ1 and λ2 such that f (x) permutes Fq2 , where q is odd and q = 22k+1, k ∈
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    On Some Permutation Trinomials in Characteristic Three
    (Hacettepe Univ, Fac Sci, 2025) Temür, Burcu Gülmez; Özkaya, Buket
    In this paper, we determine the permutation properties of the polynomial x3 +xq+2 −x4q−1 over the finite field Fq2 in characteristic three. Moreover, we consider the trinomials of the form x4q−1 + x2q+1 ± x3. In particular, we first show that x3 + xq+2 − x4q−1 permutes Fq2 with q = 3m if and only if m is odd. This enables us to show that the sufficient condition in [34, Theorem 4] is also necessary. Next, we prove that x4q−1 + x2q+1 − x3 permutes Fq2 with q = 3m if and only if m ̸≡ 0 (mod 4). Consequently, we prove that the sufficient condition in [20, Theorem 3.2] is also necessary. Finally, we investigate the trinomial x4q−1 + x2q+1 + x3 and show that it is never a permutation polynomial of Fq2 in any characteristic. All the polynomials considered in this work are not quasi-multiplicative equivalent to any known class of permutation trinomials.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Some Permutations and Complete Permutation Polynomials Over Finite Fields
    (Tubitak Scientific & Technological Research Council Turkey, 2019) Ongan, Pınar; Temür, Burcu Gülmez
    In this paper we determine $b\\in F_{q^n}^\\ast$ for which the polynomial $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a permutationpolynomial and determine $b\\in F_{q^n}^\\ast$ for which the polynominal $f(x)=x^{s+1}+bx\\in F_{q^n}\\left[x\\right]$ is a complete permutationpolynomial where $s=\\frac{q^n-1}t,\\;t\\in\\mathbb{Z}^+$ such that $\\left.t\\;\\right|\\;q^n-1$.
  • Loading...
    Thumbnail Image
    Master Thesis
    Sonlu Cisimler Üzerinde Permutasyon Polinomları
    (2017) Asad, Maha M.m. Dabboor; Temür, Burcu Gülmez
    Bu tezde sonlu cisimlerdeki permutasyon polinomları uzerine c¸alıs¸tık. Sonlu cisimler ¨ uzerinde tanımlanmıs¸ bazı permutasyon polinom tiplerinin olus¸turulması ve sınıflandı- ¨ rılması ile ilgili son zamanlarda yapılmıs¸ birtakım aras¸tırma sonuc¸larını derledik.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH
OpenAIRE Logo
OpenDOAR Logo
Jisc Open Policy Finder Logo
Harman Logo
Base Logo
OAI Logo
Handle System Logo
ROAR Logo
ROARMAP Logo
Google Scholar Logo

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback