1. Home
  2. Browse by Author

Browsing by Author "Jorayeva, Manzura"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 6
    Deep Learning-Based Defect Prediction for Mobile Applications
    (Mdpi, 2022) Jorayeva, Manzura; Akbulut, Akhan; Catal, Cagatay; Mishra, Alok; Software Engineering; 06. School Of Engineering; 01. Atılım University
    Smartphones have enabled the widespread use of mobile applications. However, there are unrecognized defects of mobile applications that can affect businesses due to a negative user experience. To avoid this, the defects of applications should be detected and removed before release. This study aims to develop a defect prediction model for mobile applications. We performed cross-project and within-project experiments and also used deep learning algorithms, such as convolutional neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model for Android-based applications. Based on our within-project experimental results, the CNN-based model provides the best performance for mobile application defect prediction with a 0.933 average area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is still room for improvement when deep learning algorithms are preferred.