Browsing by Author "Ekin, Cansu Çiğdem"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Master Thesis Konu Modelleme ile Varlığından Bügüne Kadar Mobil Öğrenme Alanındaki Araştırmaların Tema ve Trendlerinin Tespiti(2021) Algabsı, Salah Eddın; Ekin, Cansu Çiğdem; Computer EngineeringGünümüzde mobil telefonlar sadece bir telefon olarak değil, aynı zamanda bireyleri eğitmek için kullanılabilecek, öğrenme için gelişmiş özellikler sağlayan ve bilim adamlarının yeni bir modern eğitim paradigması geliştirmek için mobil cihazlardan yararlanma konusundaki ilgisinin artmasına yol açan akıllı cihazlardır. Son zamanlarda, Covid-19 pandemisinin etkisiyle, dünya çapındaki ülkeler, özellikle çevrimiçi/e-öğrenme olmak üzere uzaktan öğrenme teknolojileri geliştirmeye daha fazla yönelerek Mobil Öğrenme (m-öğrenme) ortamlarının daha çekici ve yaygın olmasını sağladı. Bu çalışma, mobil öğrenmenin varlığından günümüze kadar olan tüm araştırma eğilimlerini tespit etmeyi amaçlamaktadır. İlk olarak, bu çalışmada, alan bilgisinin önceki durumunu değerlendirmek için m-öğrenmede önceki çalışmalar hakkında geniş spektrumlu bir literatür taraması gerçekleştirilmiştir. İkinci olarak, çalışma, mobil öğrenme yayınlarının içeriğine Latent Dirichlet Allocation (LDA) Konu Modellemesi ile metin madenciliği teknikleri uygulamıştır. Uygulanan analiz sonucunda, m-öğrenmede 12 baskın konu tespit edilmiştir. İlk üç konu: 'Mobil Teknoloji ile Öğrenim', 'Öğrenci Dil Öğrenim' ve 'Öğrenme Tasarımı' dır.Master Thesis Makine Öğrenme Tekniklerini Kullanarak Öğrencinin Akademik Performansinin Tahmin Edilmesi(2023) Doost, Mırwaıs; Ekin, Cansu Çiğdem; Computer EngineeringSon dönemde eğitim sektörü, dünya genelinde insanların en fazla ilgisini çeken sektörlerden biri haline gelmiş ve bu, bu sektöre yatırım yapmak ve gelir elde etmek isteyenler için daha değerli hale gelmiştir. Bu nedenle, bu alanı daha istikrarlı hale getirmek için büyük çaba harcanmaktadır. Öğrenciler, bu alandaki en büyük paydaşlardır ve bu nedenle eğitimde daha fazla dikkat gerektirirler. Tüm üniversiteler, öğrencilerinin memnuniyetini sağlamak ve eğitim kalitesini artırmak için çaba sarf etmektedir. Çünkü eğitim kalitesi, öğrencilerin başarı oranı ve kurumun öğrencilerini elinde tutma yeteneğine bağlıdır. Öğrenci performansını tahmin etmek, başarısızlık riski taşıyan öğrencileri tanımlamanın bir yolu olduğu için yönetim, öğrenci performansını artırmak için kararlar alabilir. Bu analizler, Eğitim Veri Madenciliği (EDM) olarak adlandırılan, sonuçlar üretmek için çok büyük veri kümelerini keşfedebilen Makine Öğrenimi (ML) alt kümesi aracılığıyla gerçekleştirilebilir. Bu çalışmanın ana amacı, en uygun veri madenciliği algoritmalarını kullanarak öğrenci akademik performansını tahmin etmek ve lisans düzeyinde bilgisayar mühendisliği öğrencilerinin performansını etkileyen faktörleri belirlemektir. Öğrenci akademik performansı, Final Notu, Çalışma Süresi ve Bir Sonraki Dönem Ders Notu olmak üzere üç farklı açıdan analiz edilmiştir. Sonuçlarımız, Destek Vektör Makinesi (SVM) ve Karar Ağacı (DT) gibi iki en iyi ML algoritmasının olduğunu göstermektedir ve ayrıca sadece Final Notunun tahminde en değerli faktör olduğunu göstermiştir.Master Thesis Yapay Zeka Tabanlı Kuraklık Yönetim Sisteminin Geliştirilmesi: Türkiye için Bir Vaka Çalışması(2024) Sabamehr, Mılad; Ekin, Cansu ÇiğdemSanayi büyümesi ve kirlilik nedeniyle gelişmiş ülkeler için kuraklık ciddi bir sorun haline gelmektedir. Bu sorunun üstesinden gelmek için yenilikçi yaklaşımlara ihtiyaç vardır, bunlardan biri de yapay zeka (AI) gibi teknolojilerdir. Bu çalışma, bir veri yönetim sistemi, tahmin sistemi ve PDSI ve SPI hesaplama sistemi içeren bir AI tabanlı kuraklık yönetim sistemini tanıtmaktadır. Veri yönetim sistemi, kullanıcıların Türkiye'nin çeşitli bölgelerinden tarımsal verileri analiz etmelerine olanak tanır. Tahmin sistemi, yağış ve sıcaklık tahmin etmek için SARIMA, ARIMA ve Prophet algoritmalarını kullanır. En iyi performans gösteren algoritma, hata oranlarına göre seçilir, böylece doğru tahminler yapılır. Bu tahminler daha sonra veri yönetim sisteminde saklanır. Yapay zeka tarafından oluşturulan verilerden yararlanarak, PDSI ve SPI hesaplama sistemi bir sonraki iki yıl için PDSI ve SPI tahmin eder. Ayrıca, sistem beklenen hava koşullarını PDSI ve SPI tahminleri ile karşılaştırarak belirli bölgelerde tarımsal ürün yetiştirme riskini değerlendirir. Sonuçlar, ARIMA'nın sıcaklık ortalamalarını tahmin etmek için en uygun olduğunu, SARIMA'nın ise yağışı tahmin etmek için en iyi performansı gösterdiğini göstermektedir. 2024'te Şanlıurfa ilinde Buğday ürünleri için PDSI'nin %91 risk seviyesi ve SPI-3'ün %75 risk seviyesi olduğunu göstermektedir.Master Thesis Yükseköğretim Araştırma Eğilimlerinin Gizli Dirichlet Tahsisi ile Analiz Edilmesi: Bir Metin Madencilik Yaklaşımı(2023) Alrayashı, Abdulazız Mohammedabdullah; Ekin, Cansu Çiğdem; Computer EngineeringBu tez, Web of Science'ta (WOS) endekslenen 69.000'den fazla akademik yayından oluşan geniş bir külliyatı analiz ederek yüksek öğretimdeki araştırma eğilimlerini araştırmaktadır. Çalışma, yüksek öğretim araştırma ortamına ilişkin daha derin bir anlayış kazanmak için bibliyometrik analiz ve konu modelleme tekniklerinin, özellikle Gizli Dirichlet Tahsisi'nin (LDA) bir kombinasyonunu kullanır. Bibliyometrik analiz, yüksek öğretimle ilgili WOS yayınlarının istatistiksel dağılımlarının kapsamlı bir incelemesini sunar. Bu, yüksek öğretimdeki araştırma bağlamını anlamak için sağlam bir temel sağlayan yayın eğilimleri, belge türleri, diller ve araştırma alanları gibi unsurları içerir. Buna paralel olarak, LDA kullanan konu modelleme analizi, alandaki ana araştırma eğilimlerini, konuları ve sıklıkla ele alınan konuları ortaya çıkararak araştırma temalarının zaman içindeki gelişimine ışık tutar. Bu çalışma, hem bibliyometrik hem de konu modelleme metodolojilerini birleştirerek yüksek öğretim araştırmalarının mevcut durumunun kapsamlı bir resmini sunmaktadır. Bulgular, alanın karmaşıklığının ve karşılıklı bağımlılığının altını çizerek, yüksek öğretimde var olan olasılıkları ve sorunları ele almak için çok disiplinli bir stratejiye duyulan ihtiyacı vurgulamaktadır. Sonuçlar, yüksek öğretim araştırmalarındaki bilgi birikimine katkıda bulunur ve bu alandaki en son gelişmeler ve eğilimler hakkında güncel kalmak isteyen akademisyenler, karar vericiler ve uygulayıcılar için yararlı bir araçtır.