Browsing by Author "Bhethanabotla, Venkat"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Article Citation - WoS: 4Citation - Scopus: 3Crosslinked Polyethyleneimine-Based Structures in Different Morphologies as Promising Co2 Adsorption Systems: a Comprehensive Study(Wiley, 2024) Demirci, Sahin; Inger, Erk; Bhethanabotla, Venkat; Sahiner, NurettinAlthough there are many studies on CO2 adsorption via PEI-modified carbon particles, metal-organic frameworks, zeolitic imidazolate frameworks, and silica-based porous structures, only a limited number of studies on solely cross-linked PEI-based structures. Here, the CO2 adsorption capacities of PEI-based microgels and cryogels were investigated. The effects of various parameters influencing the CO2 adsorption capacity of PEI-based structures, for example, crosslinker types, PEI types (branched [bPEI] or linear [lPEI]), adsorbent types (microgel or cryogel), chemical-modification including their complexes were examined. NaOH-treated glycerol diglycidyl ether (GDE) crosslinked lPEI microgels exhibited higher CO2 adsorption capacity among other microgels with 0.094 +/- 0.006 mmol CO2/g at 900 mm Hg, 25 degrees C with 2- and 7.5-fold increase upon pentaethylenehexamine (PEHA) modification and Ba(II) metal ion complexing, respectively. The CO2 adsorption capacity of bPEI and lPEI-based cryogels were compared and found that lPEI-GDE cryogels had higher adsorption capacity than bPEI-GDE cryogels with 0.188 +/- 0.01 mmol CO2/g at 900 mm Hg and 25 degrees C. The reuse studies revealed that NaOH-treated GDE crosslinked bPEI and lPEI microgels and cryogels showed promising potential, for example, after 10-times repeated use >50% CO2 adsorption capacity was retained. The results affirmed that PEI-based microgels and cryogels are encouraging materials for CO2 capture and reuse applications.
