Browsing by Author "Altinisik, Hasan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Dual Zn/Zr Hybrid Framework-Integrated Membranes With Enhanced Proton Conductivity and Durability for High-Temperature PEM Fuel Cells(Wiley, 2025) Altinisik, Hasan; Devrim, YilserThis study proposes an innovative strategy for fabricating advanced composite membranes based on a poly[2,2 '-(m-phenylene)-5,5 '-bibenzimidazole] (PBI) matrix for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). A co-synthesized hybrid porous framework incorporating both Zn- and Zr-based nanostructures was integrated into the PBI backbone, ensuring uniform dispersion and strong interfacial bonding, as verified by comprehensive structural and morphological characterizations. This dual-framework architecture promoted the formation of continuous proton-conductive channels and enhanced membrane stability under demanding operating conditions. Furthermore, the membranes were utilized after acid doping, and the hybrid structure effectively mitigated the acid leaching issue, ensuring stable long-term proton conductivity. At 0.6 V and 170 degrees C, the membranes achieved a current density of approximate to 630 mA/cm2, demonstrating the critical role of structural optimization in improving fuel cell efficiency. These findings offer valuable insights into designing scalable, durable, and thermally stable membranes for next-generation HT-PEMFC applications.Article Citation - WoS: 1Citation - Scopus: 2A Review on Membranes for Anion Exchange Membrane Water Electrolyzers(Pergamon-Elsevier Science Ltd, 2026) Altinisik, Hasan; Celebi, Ceren; Ozden, Adnan; Devrim, Yilser; Colpan, C. OzgurAnion exchange membrane water electrolyzers (AEMWEs) - using water and renewable electricity as the input - provide a sustainable pathway to hydrogen production. AEMWEs perform the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) with modest overpotentials at practical current densities (>1 A cm(-2)). The recent catalysis, component, and system-level breakthroughs have enabled significant improvements in current densities and energetic efficiencies. The challenge, however, is to maintain these impressive activities and efficiencies through long-term operation at scale. High-performance, efficient, stable, and economically viable AEMWEs require high-performance, low-cost, and scalable anion exchange membranes (AEMs). This Review provides an overview of physical, chemical, and transport properties of commercial and non-commercial AEMs. The article discusses the operating principles, structures, characteristics, strengths, and weaknesses of conventional and emerging AEMs, along with their performance and stability implications in AEMWEs. The article highlights the characteristics that have intricate implications on performance, stability, and cost. It discusses recent advances and best practices to combine high-performance, efficiency, stability, and low-cost in a single AEM structure. The Review highlights the trade-offs between AEM characteristics, with an overview of emerging approaches that would overcome performance, stability, and cost challenges. The Review concludes by highlighting the research gaps and providing research directions with the potential to take the technology a step closer to wide-scale deployment.
