Browsing by Author "Alazzawi, Marwa"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Review Citation - WoS: 60Citation - Scopus: 71Atmospheric Pressure Plasma Surface Treatment of Polymers and Influence on Cell Cultivation(Mdpi, 2021) Sasmazel, Hilal Turkoglu; Alazzawi, Marwa; Alsahib, Nabeel Kadim AbidAtmospheric plasma treatment is an effective and economical surface treatment technique. The main advantage of this technique is that the bulk properties of the material remain unchanged while the surface properties and biocompatibility are enhanced. Polymers are used in many biomedical applications; such as implants, because of their variable bulk properties. On the other hand, their surface properties are inadequate which demands certain surface treatments including atmospheric pressure plasma treatment. In biomedical applications, surface treatment is important to promote good cell adhesion, proliferation, and growth. This article aim is to give an overview of different atmospheric pressure plasma treatments of polymer surface, and their influence on cell-material interaction with different cell lines.Article Citation - Scopus: 1Biocompatibility of Electrospun Pva-Based Nanocomposite With Chemical Vapor Deposition-Derived Graphene Monolayer(Lukasiewicz Research Network-industrial Chemistry inst, 2024) Sasmazel, Hilal Turkoglu; Alazzawi, Marwa; Sadhu, Verra; Gozutok, MelikeThe biocompatibility of electrospun PVA with monolayer graphene obtained by chemical vapor deposition (PVA/CVD-grown MLG) nanocomposite was investigated. The properties of PVA/ CVD-grown MLG nanocomposite were compared with those of electrospun PVA mat. Raman analysis confirmed the presence of graphene monolayer on PVA. Although no significant changes in tensile properties were observed, the electrical conductivity increased from 0.1 (PVA mat) to 0.4 mu S/cm (PVA/ CVD-grown MLG). Thermal stability was also increased, as evidenced by the higher onset temperature and temperature of maximum decomposition rate determined by TGA. The contact angle decreased slightly, which resulted in higher PBS absorption and degradation of the nanocomposite. Water vapor transmission rate (WVTR) decreased from 40 (PVA mat) to 37 g/m2 h (PVA/CVD-grown MLG). Cell culture studies showed better cell viability, population, and growth in the case of PVA/CVD-grown MLG nanocomposite due to improved physical, chemical and mechanical properties.Article Citation - WoS: 13Citation - Scopus: 14Core/Shell Glycine-Polyvinyl Alcohol/Polycaprolactone Nanofibrous Membrane Intended for Guided Bone Regeneration: Development and Characterization(Mdpi, 2021) Alazzawi, Marwa; Alsahib, Nabeel Kadim Abid; Sasmazel, Hilal TurkogluGlycine (Gly), which is the simplest amino acid, induces the inflammation response and enhances bone mass density, and particularly its beta polymorph has superior mechanical and piezoelectric properties. Therefore, electrospinning of Gly with any polymer, including polyvinyl alcohol (PVA), has a great potential in biomedical applications, such as guided bone regeneration (GBR) application. However, their application is limited due to a fast degradation rate and undesirable mechanical and physical properties. Therefore, encapsulation of Gly and PVA fiber within a poly(epsilon-caprolactone) (PCL) shell provides a slower degradation rate and improves the mechanical, chemical, and physical properties. A membrane intended for GBR application is a barrier membrane used to guide alveolar bone regeneration by preventing fast-proliferating cells from growing into the bone defect site. In the present work, a core/shell nanofibrous membrane, composed of PCL as shell and PVA:Gly as core, was developed utilizing the coaxial electrospinning technique and characterized morphologically, mechanically, physically, chemically, and thermally. Moreover, the characterization results of the core/shell membrane were compared to monolithic electrospun PCL, PVA, and PVA:Gly fibrous membranes. The results showed that the core-shell membrane appears to be a good candidate for GBR application with a nano-scale fiber of 412 +/- 82 nm and microscale pore size of 6.803 +/- 0.035 mu m. Moreover, the wettability of 47.4 +/- 2.2 degrees contact angle (C.A) and mechanical properties of 135 +/- 3.05 MPa average modulus of elasticity, 4.57 +/- 0.04 MPa average ultimate tensile stress (UTS), and 39.43% +/- 0.58% average elongation at break are desirable and suitable for GBR application. Furthermore, the X-ray diffraction (XRD) and transmission electron microscopy (TEM) results exhibited the formation of beta-Gly.Article Citation - WoS: 2Citation - Scopus: 2Physical and Biological Characteristics of Electrospun Poly (vinyl Alcohol) and Reduced Graphene Oxide Nanofibrous Structure(Taylor & Francis Ltd, 2024) Sasmazel, Hilal Turkoglu; Alazzawi, Marwa; Gozutok, Melike; Sadhu, VeeraThe fabrication of graphene-based nanocomposites has been a topic of increasing interest due to graphene's exceptional physical properties and the ability to enhance the properties of various polymeric materials. Evaluating the biocompatibility of these nanocomposites is crucial to ensure their safe and effective use in biomedical applications. This study characterized and assessed the biocompatibility of previously fabricated electrospun polyvinyl alcohol (PVA)/reduced graphene oxide rGO fibrous structures by conducting a comprehensive assessment of their physical and biological characteristics. Contact angle measurements revealed that adding rGO to electrospun PVA fibers enhanced the surface wettability, improving the fibrous structure's PBS absorption capacity and degradation behavior. Including the rGO content resulted in a higher water vapor transmission rate, reaching similar to 48 g/m2day for PVA + 0.5 wt.% rGO and similar to 45 g/m2day for PVA + 1.0 wt.% rGO, compared to similar to 40 g/m2day for electrospun PVA fibers. Cell culture studies, including MTT assay, alkaline phosphatase (ALP) activity analysis, alizarin red staining, fluorescence microscopy, and SEM analyses, demonstrated that electrospun PVA + 1.0 wt.% rGO nanocomposites exhibited superior cell viability, proliferation, and growth compared to other samples, due to the improved physical properties of the PVA + 1.0 wt.% rGO fibrous structure.

