Browsing by Author "Akdi, Yilmaz"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article Citation - WoS: 17Citation - Scopus: 18Daily Pm10, Periodicity and Harmonic Regression Model: the Case of London(Pergamon-elsevier Science Ltd, 2020) Okkaoglu, Yasin; Akdi, Yilmaz; Unlu, Kamil DemirberkOne of the most important and distinguishable features of the climate driven data can be shown as the seasonality. Due to its nature air pollution data may have hourly, daily, weekly, monthly or even seasonal cycles. Many techniques such as non-linear time series analysis, machine learning algorithms and deterministic models, have been used to deal with this non-linear structure. Although, these models can capture the seasonality they can't identify the periodicity. Periodicity is beyond the seasonality, it is the hidden pattern of the time series. In this study, it is aimed to investigate the periodicity of daily Particulate Matter (PM10) of London between the periods 2014 and 2018. PM10 is the particulate matter of which aerodynamic diameter is less than 10 mu m. Firstly, periodogram based unit root test is used to check the stationarity of the investigated data. Afterwards, hidden periodic structure of the data is revealed. It is found that, it has five different cycle periods as 7 days, 25 days, 6 months, a year and 15 months. Lastly, it is shown that harmonic regression performs better in forecasting monthly and daily averages of the data.Article Citation - WoS: 9Citation - Scopus: 7Identifying the Cycles in Covid-19 Infection: the Case of Turkey(Taylor & Francis Ltd, 2023) Akdi, Yilmaz; Karamanoglu, Yunus Emre; Unlu, Kamil Demirberk; Bas, CemThe new coronavirus disease, called COVID-19, has spread extremely quickly to more than 200 countries since its detection in December 2019 in China. COVID-19 marks the return of a very old and familiar enemy. Throughout human history, disasters such as earthquakes, volcanic eruptions and even wars have not caused more human losses than lethal diseases, which are caused by viruses, bacteria and parasites. The first COVID-19 case was detected in Turkey on 12 March 2020 and researchers have since then attempted to examine periodicity in the number of daily new cases. One of the most curious questions in the pandemic process that affects the whole world is whether there will be a second wave. Such questions can be answered by examining any periodicities in the series of daily cases. Periodic series are frequently seen in many disciplines. An important method based on harmonic regression is the focus of the study. The main aim of this study is to identify the hidden periodic structure of the daily infected cases. Infected case of Turkey is analyzed by using periodogram-based methodology. Our results revealed that there are 4, 5 and 62 days cycles in the daily new cases of Turkey.Article Citation - WoS: 16Citation - Scopus: 18Modeling and Forecasting of Monthly Pm2.5 Emission of Paris by Periodogram-Based Time Series Methodology(Springer, 2021) Akdi, Yilmaz; Golveren, Elif; Unlu, Kamil Demirberk; Yucel, Mustafa ErayIn this study, monthly particulate matter (PM2.5) of Paris for the period between January 2000 and December 2019 is investigated by utilizing a periodogram-based time series methodology. The main contribution of the study is modeling the PM2.5 of Paris by extracting the information purely from the examined time series data, where proposed model implicitly captures the effects of other factors, as all their periodic and seasonal effects reside in the air pollution data. Periodicity can be defined as the patterns embedded in the data other than seasonality, and it is crucial to understand the underlying periodic dynamics of air pollutants to better fight pollution. The method we use successfully captures and accounts for the periodicities, which could otherwise be mixed with seasonality under an alternative methodology. Upon the unit root test based on periodograms, it is revealed that the investigated data has periodicities of 1 year and 20 years, so harmonic regression is utilized as an alternative to Box-Jenkins methodology. As the harmonic regression displayed a better performance both in and out-of-sample forecasts, it can be considered as a powerful alternative to model and forecast time series with a periodic structure.Article Citation - WoS: 18Citation - Scopus: 20Periodicity in Precipitation and Temperature for Monthly Data of Turkey(Springer Wien, 2021) Akdi, Yilmaz; Unlu, Kamil DemirberkIn this study, we model and forecast monthly average temperature and monthly average precipitation of Turkey by employing periodogram-based time series methodology. We compare autoregressive integrated moving average methodology and harmonic regression. We show that harmonic regression performs better than the classical methodology in both time series. Also, we find that the monthly average temperature and monthly average precipitation have two different periodic structures of 6 months and 12 months which coincide with the seasonal pattern of the time series.Article Citation - Scopus: 2The Refinement of a Common Correlated Effect Estimator in Panel Unit Root Testing: an Extensive Simulation Study(Mdpi, 2024) Omay, Tolga; Akdi, Yilmaz; Emirmahmutoglu, Furkan; Eryilmaz, MeltemThe Common Correlated Effect (CCE) estimator is widely used in panel data models to address cross-sectional dependence, particularly in nonstationary panels. However, existing estimators have limitations, especially in small-sample settings. This study refines the CCE estimator by introducing new proxy variables and testing them through a comprehensive set of simulations. The proposed method is simple yet effective, aiming to improve the handling of cross-sectional dependence. Simulation results show that the refined estimator eliminates cross-sectional dependence more effectively than the original CCE, with improved power properties under both weak- and strong-dependence scenarios. The refined estimator performs particularly well in small sample sizes. These findings offer a more robust framework for panel unit root testing, enhancing the reliability of CCE estimators and contributing to further developments in addressing cross-sectional dependence in panel data models.

