Master Tezler / Master Thesis
Permanent URI for this collectionhttps://ada.atilim.edu.tr/handle/123456789/23
Browse
Browsing Master Tezler / Master Thesis by Author "Aksoy, Ümit"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Master Thesis Amerikan opsiyonlarının hesaplamalı yöntemlerle fiyatlandırılması(2014) Aydoğan, Burcu; Aksoy, Ümit; Uğur, Ömür; MathematicsFinansal matematikte, opsiyon fiyatlama finansal teori ve matematiksel olarak düşünüldüğünde, çok popüler bir problemdir. Opsiyon fiyatlama teorisinde, Amerikan opsiyonlarının fiyatlandırılması en önemli problemlerden biridir. Amerikan opsiyonları, finansal piyasalarda en çok işlem gören opsiyon türüdür. Son zamanlardaki birçok gelişmeye rağmen, Amerikan opsiyon fiyatlandırması hala en zor problemlerden biri olarak kalmaya devam etmektedir. Amerikan opsiyonlarının kapalı analitik çözümleri yoktur, bu sebeple bu problemle uğraşmanın en yaygın yollarından biri sayısal ve yaklaşım teknikleri geliştirmektir. Bu tezde, Amerikan opsiyonlarını fiyatlandırmak için hesaplamalı metotlardan; binom, sonlu fark ve yaklaşım metotları analiz edilmiştir. İlk olarak, uygulaması çok kolay olan ve varlık fiyatlarının geometrik Brownian hareketinden geldiğini varsayan binom yaklaşımı ele alınmıştır. Daha sonra, Amerikan opsiyonları için Black-Scholes kısmi diferansiyel denklemine dayanarak serbest sınır değer problemi verilmiştir. Bu problemi çözmek için PSOR metodu kullanılmıştır. Amerikan opsiyonlarının kapalı çözümleri olmamasına rağmen, opsiyonun değerine çok yaklaşan bazı analitik yaklaşım metotları üzerinde çalışılmıştır. Her bir metodun uygulamaları yapılmıştır ve çözümler karşılaştırılmıştır.Master Thesis Doğrusal olmayan Black-Scholes denklemi için üstel sonlu fark yöntemi(2017) Omar, Fathıa; Aksoy, Ümit; Aydın, Ayhan; MathematicsBu tezde, likit olmayan bir piyasada ortaya çıkan doğrusal olmayan Black-Scholes denklemi için üstel sonlu fark yöntemi çalışılmıştır. 1. Bölüm opsiyon fiyatlandırması problemi terminolojisi, temel tanımlar ve literatür taramasına ayrılmıştır. 2. Bölümde Black-Scholes modeli ve Black-Scholes denklemi için sonlu fark yöntemleri gözden geçirilmiştir. 3. Bölümde doğrusal olmayan Black-Scholes denklemi için açık sonlu fark yöntemi, monotonluk, kararlılık ve tutarlılık sonuçları ile birlikte çalışılmıştır. 4. Bölümde doğrusal ve doğrusal olmayan Black-Scholes denklemleri için üstel sonlu fark yöntemi uygulanmıştır. Ayrıca, yöntemin tutarlılığı ve yakınsaklığı araştırılmıştır. Teorik sonuçları doğrulamak için sayısal örnekler verilmiştir. Sayısal sonuçlar, üstel sonlu fark yönteminin açık sonlu fark yönteminden daha iyi performans sergilediğini göstermiştir. 5. Bölüm sonuç kısmına ayrılmıştır.