Predicting Software Functional Size Using Natural Language Processing: an Exploratory Case Study

dc.authorscopusid57521977500
dc.authorscopusid57340107000
dc.authorscopusid59643575200
dc.authorscopusid59643575300
dc.authorscopusid59644134000
dc.authorscopusid56422190200
dc.authorscopusid59640759700
dc.contributor.authorUnlu, Huseyin
dc.contributor.authorTenekeci, Samet
dc.contributor.authorCiftci, Can
dc.contributor.authorOral, Ibrahim Baran
dc.contributor.authorAtalay, Tunahan
dc.contributor.authorHacaloglu, Tuna
dc.contributor.authorDemirors, Onur
dc.date.accessioned2025-04-07T18:52:47Z
dc.date.available2025-04-07T18:52:47Z
dc.date.issued2024
dc.departmentAtılım Universityen_US
dc.department-temp[Unlu, Huseyin; Tenekeci, Samet; Ciftci, Can; Oral, Ibrahim Baran; Atalay, Tunahan; Demirors, Onur] Izmir Inst Technol, Dept Comp Engn, Izmir, Turkiye; [Tenekeci, Samet; Demirors, Onur] Bilgi Grubu, Izmir, Turkiye; [Hacaloglu, Tuna] Atilim Univ, Dept Informat Syst Engn, Ankara, Turkiye; [Hacaloglu, Tuna] Ecole Technol Super, Dept Software & IT Engn, Montreal, PQ, Canada; [Musaoglu, Burcu] Siskon Software & Automat, Izmir, Turkiyeen_US
dc.description.abstractSoftware Size Measurement (SSM) plays an essential role in software project management as it enables the acquisition of software size, which is the primary input for development effort and schedule estimation. However, many small and medium-sized companies cannot perform objective SSM and Software Effort Estimation (SEE) due to the lack of resources and an expert workforce. This results in inadequate estimates and projects exceeding the planned time and budget. Therefore, organizations need to perform objective SSM and SEE using minimal resources without an expert workforce. In this research, we conducted an exploratory case study to predict the functional size of software project requirements using state-of-the-art large language models (LLMs). For this aim, we fine-tuned BERT and BERT_SE with a set of user stories and their respective functional size in COSMIC Function Points (CFP). We gathered the user stories included in different project requirement documents. In total size prediction, we achieved 72.8% accuracy with BERT and 74.4% accuracy with BERT_SE. In data movement-based size prediction, we achieved 87.5% average accuracy with BERT and 88.1% average accuracy with BERT_SE. Although we use relatively small datasets in model training, these results are promising and hold significant value as they demonstrate the practical utility of language models in SSM.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.1109/SEAA64295.2024.00036
dc.identifier.endpage193en_US
dc.identifier.isbn9798350380279
dc.identifier.isbn9798350380262
dc.identifier.issn2640-592X
dc.identifier.scopus2-s2.0-85212703074
dc.identifier.scopusqualityN/A
dc.identifier.startpage188en_US
dc.identifier.urihttps://doi.org/10.1109/SEAA64295.2024.00036
dc.identifier.urihttps://hdl.handle.net/20.500.14411/10507
dc.identifier.wosWOS:001413352200026
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof50th Euromicro Conference on Software Engineering and Advanced Applications -- AUG 28-30, 2024 -- Paris, FRANCEen_US
dc.relation.ispartofseriesEuromicro Conference on Software Engineering and Advanced Applications
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSoftware Size Measurementen_US
dc.subjectNatural Language Processingen_US
dc.subjectCosmicen_US
dc.subjectBerten_US
dc.subjectFunctional Sizeen_US
dc.subjectSoftware Engineeringen_US
dc.subjectNlpen_US
dc.titlePredicting Software Functional Size Using Natural Language Processing: an Exploratory Case Studyen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files

Collections