Bluetooth sinyanlerinin radyo frekansı parmak izi kontrolünde dalgacık ayrıştırma kullanımı

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Bu tez, Bluetooth (BT) sinyallerine dayalı olarak cep telefonları gibi belirli cihazları tanımlamak için Radyo Frekansı Parmak izi (RFF) kontrolünü çıkarmak ve kullanmak için yeni bir Açık Sistem Bağlantısı (OSI) Fiziksel (PHY) katman şemasını ele almaktadır. İlk olarak, cep telefonlarından deneysel olarak toplanan BT geçici sinyallerinden parmak izi öznitelikleri çıkarılmıştır. Geçici Bluetooth sinyallerini analiz ettikten sonra, Bluetooth sinyallerini ayrıştırmak için Çift-Ağaç Karmaşık Dalgacık Dönüşümü (DT-CWT) kullanılmıştır. Hem zaman alanı (TD) hem de dalgacık alanı (WD) sinyallerinden öznitelik çıkarımı gerçekleştirilmiştir. Daha sonra sınıflandırma için destekçi vektör makinesi (SVM) sınıflandırıcısı kullanılmıştır. Daha sonra, zaman alanı (TD) ve dalgacık alanı (WD) BT sinyalleri için elde edilen sınıflandırma sonuçları karşılaştırılmıştır. Deneyler, düşük SNR (0 < SNR< 5 dB), orta SNR (5 < SNR < 15 dB), yüksek SNR (15 < SNR < 25 dB) ve çok yüksek gibi farklı SNR seviyeleri ile farklı geçici süreler altında gerçekleştirilmiştir. SNR (25 < SNR < 35 dB). Elde edilen sonuçlar, düşük SNR seviyelerinde kısa geçici sürelerle bile WD'de (en az %88) makul bir doğruluk elde etmenin mümkün olduğunu göstermektedir. TD BT sinyalleri için elde edilen sonuçlarla karşılaştırıldığında, WD BT sinyalleri için daha iyi algılama doğruluğu elde edildiği açıkça görülmektedir. Bu nedenle, DT-CWT kullanımının BT sinyallerinin RF parmak izini çıkarmada açıkça kullanılabileceği sonucuna varılmıştır.
This thesis addresses a new Open Systems Interconnection (OSI) Physical (PHY) layer scheme for extract and exploits Radio Frequency Fingerprinting (RFF) to uniquely identify specific devices such as cell phones based on their Bluetooth (BT) signals. Firstly, fingerprint features were extracted from BT transient signals experimentally collected from cell phones. After analysing transient Bluetooth signals, Dual-Tree Complex Wavelet Transform (DT-CWT) has been used to decompose Bluetooth signals. Feature extraction was performed from both time-domain (TD) and wavelet-domain (WD) signals. Then, for classification, supported vector machine (SVM) classifier was used. Next, classification results achieved for time domain (TD) and wavelet domain (WD) BT signals were compared. The experiments were performed under different transient durations with different SNR levels such as low SNR (0 < SNR< 5 dB), moderate SNR (5 < SNR < 15 dB), high SNR (15 < SNR < 25 dB), and very high SNR (25 < SNR < 35 dB). Results show that it is possible to achieve reasonable accuracy in WD (at least 88%) even with short transient durations at low SNR levels. When compared to the results achieved for TD BT signals, better detection accuracy is clearly observed for WD BT signals.

Description

Keywords

Elektrik ve Elektronik Mühendisliği, Bluetooth, Dalgacık, Dalgacık analizi, Dalgacık dönüşüm tekniği, Electrical and Electronics Engineering, Dalgacık dönüşümleri, Bluetooth, Dalgacık tekniği, Wavelet, Wavelet analysis, Güvenlik mühendisliği, Wavelet transforms technique, Wavelet transforms, Güvenlik sistemleri, Wavelet technique, Güvenlik stratejileri, Security engineering, Security systems, RF, Security strategy

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

54