Differential Quadrature Solution of Hyperbolic Telegraph Equation

dc.authorid Pekmen Geridonmez, Bengisen/0000-0002-3073-6284
dc.authorid Tezer-Sezgin, Munevver/0000-0001-5439-3477
dc.authorscopusid 57200550143
dc.authorscopusid 35071900400
dc.authorwosid tezer-sezgin, münevver/AAB-3269-2022
dc.authorwosid Pekmen Geridonmez, Bengisen/G-5598-2018
dc.contributor.author Pekmen, B.
dc.contributor.author Tezer-Sezgin, M.
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:11:09Z
dc.date.available 2024-07-05T15:11:09Z
dc.date.issued 2012
dc.department Atılım University en_US
dc.department-temp [Pekmen, B.; Tezer-Sezgin, M.] Middle E Tech Univ, Inst Appl Math, TR-06800 Ankara, Turkey; [Pekmen, B.] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Tezer-Sezgin, M.] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkey en_US
dc.description Pekmen Geridonmez, Bengisen/0000-0002-3073-6284; Tezer-Sezgin, Munevver/0000-0001-5439-3477 en_US
dc.description.abstract Differential quadrature method (DQM) is proposed for the numerical solution of one- and two-space dimensional hyperbolic telegraph equation subject to appropriate initial and boundary conditions. Both polynomial-based differential quadrature (PDQ) and Fourier-based differential quadrature (FDQ) are used in space directions while PDQ is made use of in time direction. Numerical solution is obtained by using Gauss-Chebyshev-Lobatto grid points in space intervals and equally spaced and/or GCL grid points for the time interval. DQM in time direction gives the solution directly at a required time level or steady state without the need of iteration. DQM also has the advantage of giving quite good accuracy with considerably small number of discretization points both in space and time direction. en_US
dc.identifier.citationcount 14
dc.identifier.doi 10.1155/2012/924765
dc.identifier.issn 1110-757X
dc.identifier.scopus 2-s2.0-84864944749
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1155/2012/924765
dc.identifier.uri https://hdl.handle.net/20.500.14411/1413
dc.identifier.wos WOS:000308169700001
dc.institutionauthor Pekmen, Bengisen
dc.language.iso en en_US
dc.publisher Hindawi Publishing Corporation en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 18
dc.subject [No Keyword Available] en_US
dc.title Differential Quadrature Solution of Hyperbolic Telegraph Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 15
dspace.entity.type Publication
relation.isAuthorOfPublication 7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isAuthorOfPublication.latestForDiscovery 7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections