Differential Quadrature Solution of Hyperbolic Telegraph Equation

dc.authoridPekmen Geridonmez, Bengisen/0000-0002-3073-6284
dc.authoridTezer-Sezgin, Munevver/0000-0001-5439-3477
dc.authorscopusid57200550143
dc.authorscopusid35071900400
dc.authorwosidtezer-sezgin, münevver/AAB-3269-2022
dc.authorwosidPekmen Geridonmez, Bengisen/G-5598-2018
dc.contributor.authorPekmen, Bengisen
dc.contributor.authorTezer-Sezgin, M.
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:11:09Z
dc.date.available2024-07-05T15:11:09Z
dc.date.issued2012
dc.departmentAtılım Universityen_US
dc.department-temp[Pekmen, B.; Tezer-Sezgin, M.] Middle E Tech Univ, Inst Appl Math, TR-06800 Ankara, Turkey; [Pekmen, B.] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Tezer-Sezgin, M.] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkeyen_US
dc.descriptionPekmen Geridonmez, Bengisen/0000-0002-3073-6284; Tezer-Sezgin, Munevver/0000-0001-5439-3477en_US
dc.description.abstractDifferential quadrature method (DQM) is proposed for the numerical solution of one- and two-space dimensional hyperbolic telegraph equation subject to appropriate initial and boundary conditions. Both polynomial-based differential quadrature (PDQ) and Fourier-based differential quadrature (FDQ) are used in space directions while PDQ is made use of in time direction. Numerical solution is obtained by using Gauss-Chebyshev-Lobatto grid points in space intervals and equally spaced and/or GCL grid points for the time interval. DQM in time direction gives the solution directly at a required time level or steady state without the need of iteration. DQM also has the advantage of giving quite good accuracy with considerably small number of discretization points both in space and time direction.en_US
dc.identifier.citation14
dc.identifier.doi10.1155/2012/924765
dc.identifier.issn1110-757X
dc.identifier.scopus2-s2.0-84864944749
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1155/2012/924765
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1413
dc.identifier.wosWOS:000308169700001
dc.language.isoenen_US
dc.publisherHindawi Publishing Corporationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleDifferential Quadrature Solution of Hyperbolic Telegraph Equationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isAuthorOfPublication.latestForDiscovery7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections