Differential Quadrature Solution of Hyperbolic Telegraph Equation

dc.contributor.author Pekmen, B.
dc.contributor.author Tezer-Sezgin, M.
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:11:09Z
dc.date.available 2024-07-05T15:11:09Z
dc.date.issued 2012
dc.description Pekmen Geridonmez, Bengisen/0000-0002-3073-6284; Tezer-Sezgin, Munevver/0000-0001-5439-3477 en_US
dc.description.abstract Differential quadrature method (DQM) is proposed for the numerical solution of one- and two-space dimensional hyperbolic telegraph equation subject to appropriate initial and boundary conditions. Both polynomial-based differential quadrature (PDQ) and Fourier-based differential quadrature (FDQ) are used in space directions while PDQ is made use of in time direction. Numerical solution is obtained by using Gauss-Chebyshev-Lobatto grid points in space intervals and equally spaced and/or GCL grid points for the time interval. DQM in time direction gives the solution directly at a required time level or steady state without the need of iteration. DQM also has the advantage of giving quite good accuracy with considerably small number of discretization points both in space and time direction. en_US
dc.identifier.doi 10.1155/2012/924765
dc.identifier.issn 1110-757X
dc.identifier.issn 1687-0042
dc.identifier.scopus 2-s2.0-84864944749
dc.identifier.uri https://doi.org/10.1155/2012/924765
dc.identifier.uri https://hdl.handle.net/20.500.14411/1413
dc.language.iso en en_US
dc.publisher Hindawi Publishing Corporation en_US
dc.relation.ispartof Journal of Applied Mathematics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Differential Quadrature Solution of Hyperbolic Telegraph Equation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Pekmen Geridonmez, Bengisen/0000-0002-3073-6284
gdc.author.id Tezer-Sezgin, Munevver/0000-0001-5439-3477
gdc.author.institutional Pekmen, Bengisen
gdc.author.scopusid 57200550143
gdc.author.scopusid 35071900400
gdc.author.wosid tezer-sezgin, münevver/AAB-3269-2022
gdc.author.wosid Pekmen Geridonmez, Bengisen/G-5598-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Pekmen, B.; Tezer-Sezgin, M.] Middle E Tech Univ, Inst Appl Math, TR-06800 Ankara, Turkey; [Pekmen, B.] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Tezer-Sezgin, M.] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 2012
gdc.identifier.openalex W2104266815
gdc.identifier.wos WOS:000308169700001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 3.2879413E-9
gdc.oaire.isgreen false
gdc.oaire.keywords QA1-939
gdc.oaire.keywords Mathematics
gdc.oaire.popularity 7.984212E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.35031484
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 12
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 19
gdc.wos.citedcount 15
relation.isAuthorOfPublication 7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isAuthorOfPublication.latestForDiscovery 7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections