On the Lupas <i>q</I>-transform
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:15:58Z | |
dc.date.available | 2024-07-05T15:15:58Z | |
dc.date.issued | 2011 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | The Lupas q-transform emerges in the study of the limit q-Lupas operator. The latter comes out naturally as a limit for a sequence of the Lupas q-analogues of the Bernstein operator. Lately, it has been studied by several authors from different perspectives in mathematical analysis and approximation theory. This operator is closely related to the q-deformed Poisson probability distribution, which is used widely in the q-boson operator calculus. (Lambda(q)f)(z) := 1/(-z; q)(infinity) . Sigma(infinity)(k=0) f(1 - q(k))q(k(k-1)/2)/(q; q)(k) z(k). In this paper, we study some analytic properties of (Lambda(q)f)(z). In particular, we examine the conditions under which Lambda(q)f can either be an entire function, or a rational one. (C) 2010 Elsevier Ltd. All rights reserved. | en_US |
dc.identifier.citation | 8 | |
dc.identifier.doi | 10.1016/j.camwa.2010.11.025 | |
dc.identifier.endpage | 532 | en_US |
dc.identifier.issn | 0898-1221 | |
dc.identifier.issn | 1873-7668 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-78951472266 | |
dc.identifier.startpage | 527 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.camwa.2010.11.025 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1565 | |
dc.identifier.volume | 61 | en_US |
dc.identifier.wos | WOS:000287553200002 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | q-integers | en_US |
dc.subject | q-binomial theorem | en_US |
dc.subject | Lupas q-analogue of the Bernstein operator | en_US |
dc.subject | Analytic function | en_US |
dc.subject | Meromorphic function | en_US |
dc.title | On the Lupas <i>q</I>-transform | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |