On the Lupas <i>q</I>-transform

dc.authorscopusid 35610828900
dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:15:58Z
dc.date.available 2024-07-05T15:15:58Z
dc.date.issued 2011
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description.abstract The Lupas q-transform emerges in the study of the limit q-Lupas operator. The latter comes out naturally as a limit for a sequence of the Lupas q-analogues of the Bernstein operator. Lately, it has been studied by several authors from different perspectives in mathematical analysis and approximation theory. This operator is closely related to the q-deformed Poisson probability distribution, which is used widely in the q-boson operator calculus. (Lambda(q)f)(z) := 1/(-z; q)(infinity) . Sigma(infinity)(k=0) f(1 - q(k))q(k(k-1)/2)/(q; q)(k) z(k). In this paper, we study some analytic properties of (Lambda(q)f)(z). In particular, we examine the conditions under which Lambda(q)f can either be an entire function, or a rational one. (C) 2010 Elsevier Ltd. All rights reserved. en_US
dc.identifier.citationcount 8
dc.identifier.doi 10.1016/j.camwa.2010.11.025
dc.identifier.endpage 532 en_US
dc.identifier.issn 0898-1221
dc.identifier.issn 1873-7668
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-78951472266
dc.identifier.startpage 527 en_US
dc.identifier.uri https://doi.org/10.1016/j.camwa.2010.11.025
dc.identifier.uri https://hdl.handle.net/20.500.14411/1565
dc.identifier.volume 61 en_US
dc.identifier.wos WOS:000287553200002
dc.identifier.wosquality Q1
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 8
dc.subject q-integers en_US
dc.subject q-binomial theorem en_US
dc.subject Lupas q-analogue of the Bernstein operator en_US
dc.subject Analytic function en_US
dc.subject Meromorphic function en_US
dc.title On the Lupas <i>q</I>-transform en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections